Lossless Coding III

<table>
<thead>
<tr>
<th>a_k</th>
<th>p_k</th>
<th>b_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0.16</td>
<td>111</td>
</tr>
<tr>
<td>b</td>
<td>0.04</td>
<td>0001</td>
</tr>
<tr>
<td>c</td>
<td>0.04</td>
<td>0000</td>
</tr>
<tr>
<td>d</td>
<td>0.16</td>
<td>110</td>
</tr>
<tr>
<td>e</td>
<td>0.23</td>
<td>01</td>
</tr>
<tr>
<td>f</td>
<td>0.07</td>
<td>1001</td>
</tr>
<tr>
<td>g</td>
<td>0.06</td>
<td>1000</td>
</tr>
<tr>
<td>h</td>
<td>0.09</td>
<td>001</td>
</tr>
<tr>
<td>i</td>
<td>0.15</td>
<td>101</td>
</tr>
</tbody>
</table>
Random Processes with Memory

Example: Stationary Markov Process

- Statistical properties are given by conditional pmf $p(a_n|a_{n-1})$

| | $p(a|a_0)$ | $p(a|a_1)$ | $p(a|a_2)$ | $p(a)$ | Huffman code |
|---|------------|------------|------------|--------|--------------|
| a_0 | 0.90 | 0.15 | 0.05 | 29/45 | 1 |
| a_1 | 0.05 | 0.80 | 0.05 | 11/45 | 01 |
| a_2 | 0.05 | 0.05 | 0.60 | 1/9 | 00 |

- Average codeword length for conventional Huffman code

$$\bar{\ell}_{SH} = \frac{61}{45} \approx 1.3556$$

$$H(S) \approx 1.2575$$

- Can we exploit the dependencies between successive symbols?
 - Design a Huffman code for each condition
 - Switch code table after each symbol
Conditional Variable-Length Codes

Example: Stationary Markov Process

- **Conditional code**

<table>
<thead>
<tr>
<th>(a_k)</th>
<th>(S_{n-1} = a_0)</th>
<th>(S_{n-1} = a_1)</th>
<th>(S_{n-1} = a_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_k)</td>
<td>code</td>
<td>(p_k)</td>
<td>code</td>
</tr>
<tr>
<td>(a_0)</td>
<td>0.90</td>
<td>1</td>
<td>0.15</td>
</tr>
<tr>
<td>(a_1)</td>
<td>0.05</td>
<td>01</td>
<td>0.80</td>
</tr>
<tr>
<td>(a_2)</td>
<td>0.05</td>
<td>00</td>
<td>0.05</td>
</tr>
</tbody>
</table>

- \(\bar{\ell}_0 = 1.1\)
- \(\bar{\ell}_1 = 1.2\)
- \(\bar{\ell}_2 = 1.4\)

- **Average codeword length for conditional code**

\[
\bar{\ell} = \sum_{\forall i} p(a_i) \cdot \bar{\ell}_i = \frac{521}{450} \approx 1.1578
\]

- \(\bar{\ell} < \bar{\ell}_{SH} \approx 1.3556\)
- \(\bar{\ell} < H(S) \approx 1.2575\)
Conditional Codes / Conditional Entropy

Average Codeword Length for Conditional Codes

Bounds on Minimum Average Codeword Length

For each condition \(\{S_{n-1} = a_i\} \), we have the same relationship as in conventional variable-length coding

\[
H(S_n \mid a_i) \leq \bar{\ell}_i < H(S_n \mid a_i) + 1 \tag{1}
\]

where \(H(S_n \mid a_i) \) is the conditional entropy given the event \(\{S_{n-1} = a_i\} \),

\[
H(S_n \mid a_i) = H(S_n \mid S_{n-1} = a_i) = - \sum_{\forall k} p(a_k \mid a_i) \log_2 p(a_k \mid a_i) \tag{2}
\]

Each condition \(\{S_{n-1} = a_i\} \) occurs with the probability \(p_i = P(S_{n-1} = a_i) \)

Hence, the resulting bounds on \(\bar{\ell} \) are given by

\[
\left(\sum_{\forall i} p_i H(S_n \mid a_i) \right) \leq \left(\sum_{\forall i} p_i \bar{\ell}_i \right) < \left(\sum_{\forall i} p_i H(S_n \mid a_i) \right) + 1 \tag{3}
\]
Conditional Entropy

Lower bound for conditional coding

- Conditional entropy of S_n given S_{n-1}

$$H(S_n \mid S_{n-1}) = \sum_{\forall i} p(a_i) H(S_n \mid a_i)$$

$$= \sum_{\forall i} p(a_i) \left(- \sum_{\forall k} p(a_k \mid a_i) \log_2 p(a_k \mid a_i) \right)$$

$$= - \sum_{\forall i, k} p(a_k, a_i) \log_2 p(a_k \mid a_i)$$

(4)

$$= E \left\{ - \log_2 p(S_n \mid S_{n-1}) \right\}$$

(5)

- Minimum average codeword length of a conditional code is bounded by

$$H(S_n \mid S_{n-1}) \leq \bar{\ell}_{\text{min}} < H(S_n \mid S_{n-1}) + 1$$

(6)
General Conditional Coding

Arbitrary Condition

- Can use arbitrary random variable X as condition
- Example: Any function of already coded symbols $X = f(S_{n-1}, S_{n-2}, \cdots)$
- Design a code (codeword table) for each possible value of X

Conditional Entropy

- Conditional entropy of a random variable S given a random variable X

$$H(S | X) = \mathbb{E}\left\{ -\log_2 p_{S|X}(S | X) \right\} = -\sum_{s, x} p_{SX}(s, x) \log_2 p_{S|X}(s | x) \quad (7)$$

Bounds on Minimum Average Codeword Length

- Minimum average codeword length for conditional coding is bounded by

$$H(S | X) \leq \bar{\ell}_{S|X} < H(S | X) + 1 \quad (8)$$
Conditioning Does Not Increase Entropy

Conditional Entropy vs Marginal Entropy

By using the divergence inequality, we obtain

\[
H(S \mid X) = - \sum_{s, x} p_{SX}(s, x) \log_2 p_{S \mid X}(s \mid x) \quad \text{with} \quad p_{S \mid X}(s \mid x) = \frac{p_{SX}(s, x)}{p_X(x)}
\]

\[
= - \sum_{s, x} p_{SX}(s, x) \log_2 \left(\frac{p_{SX}(s, x) p_S(s)}{p_X(x) p_S(s)} \right)
\]

\[
= - \sum_s p_S(s) \log_2 p_S(s) - \sum_{s, x} p_{SX}(s, x) \log_2 \left(\frac{p_{SX}(s, x)}{p_X(x) p_S(s)} \right)
\]

\[
= H(S) - D(p_{SX} || p_S p_X)
\]

\[
\leq H(S)
\]

Equality is only obtained if the random variables \(S \) and \(X \) are independent

\[
D(p_{SX} || p_S p_X) = 0 \iff p_{SX}(s, x) = p_S(s) \cdot p_X(x)
\]
Example: Stationary Markov Process

Summary on Markov Process Example

<table>
<thead>
<tr>
<th>$S_{n-1} = a_0$</th>
<th>$S_{n-1} = a_1$</th>
<th>$S_{n-1} = a_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_k</td>
<td>p_k</td>
<td>code</td>
</tr>
<tr>
<td>a_0</td>
<td>0.90</td>
<td>1</td>
</tr>
<tr>
<td>a_1</td>
<td>0.05</td>
<td>01</td>
</tr>
<tr>
<td>a_2</td>
<td>0.05</td>
<td>00</td>
</tr>
</tbody>
</table>

| | $H_0 = 0.5690$ | $H_1 = 0.8842$ | $H_2 = 1.3527$ |
| $\bar{\ell}_0 = 1.1$ | $\bar{\ell}_1 = 1.2$ | $\bar{\ell}_2 = 1.4$ |

\[
H(S_n | S_{n-1}) = 0.7331
\]
\[
\bar{\ell}_{\text{cond}} = 1.1578
\]

<table>
<thead>
<tr>
<th>conventional coding</th>
<th>p_k</th>
<th>code</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_k</td>
<td>code</td>
<td></td>
</tr>
<tr>
<td>0.6444</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0.2444</td>
<td>01</td>
<td></td>
</tr>
<tr>
<td>0.1111</td>
<td>00</td>
<td></td>
</tr>
</tbody>
</table>

\[
H(S) = 1.2575
\]
\[
\bar{\ell}_{\text{conv}} = 1.3556
\]

- Conditioning reduces entropy from 1.2575 to 0.7331
- Conditioning reduces average codeword length from 1.3556 to 1.1578
Example for Conditional Code: H.264 | MPEG-4 AVC

Table 9-5 - `coeff_token` mapping to `TotalCoeff(coeff_token)` and `TrailingOnes(coeff_token)`

<table>
<thead>
<tr>
<th>TrailingOnes (coeff_token)</th>
<th>TotalCoeff (coeff_token)</th>
<th>0 <= nC < 2</th>
<th>2 <= nC < 4</th>
<th>4 <= nC < 8</th>
<th>8 <= nC</th>
<th>nC == -1</th>
<th>nC == -2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>11</td>
<td>1111</td>
<td>0000 11</td>
<td>01</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0001 01</td>
<td>0010 11</td>
<td>0011 11</td>
<td>0000 00</td>
<td>0001 11</td>
<td>0001 111</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>01</td>
<td>10</td>
<td>1110</td>
<td>0000 01</td>
<td>1</td>
<td>01</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>0000 0111</td>
<td>0001 11</td>
<td>0010 11</td>
<td>0001 00</td>
<td>0001 00</td>
<td>0001 110</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0001 00</td>
<td>0011 1</td>
<td>0111 1</td>
<td>0001 01</td>
<td>0001 10</td>
<td>0001 101</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>001</td>
<td>011</td>
<td>1101</td>
<td>0001 10</td>
<td>001</td>
<td>001</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>0000 0011 1</td>
<td>0000 111</td>
<td>0010 00</td>
<td>0010 00</td>
<td>0000 11</td>
<td>0000 0011 1</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>0000 0110</td>
<td>0010 10</td>
<td>0110 0</td>
<td>0010 01</td>
<td>0000 011</td>
<td>0001 100</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>0000 101</td>
<td>0010 01</td>
<td>0111 0</td>
<td>0010 10</td>
<td>0000 010</td>
<td>0001 011</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0001 1</td>
<td>0101</td>
<td>1100</td>
<td>0010 11</td>
<td>0001 01</td>
<td>0000 1</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td>0000 0001 11</td>
<td>0000 0111</td>
<td>0001 111</td>
<td>0011 00</td>
<td>0000 10</td>
<td>0000 0011 0</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>0000 0011 0</td>
<td>0001 10</td>
<td>0101 0</td>
<td>0011 01</td>
<td>0000 011</td>
<td>0000 010 1</td>
</tr>
</tbody>
</table>

(continued)
Block Codes / Problem with Scalar Codes

Example: Binary Markov Process

- **Binary random process** $S = \{S\}$:

 $S = 0 \rightarrow$ white sample

 $S = 1 \rightarrow$ black sample

- **Statistics measured over a large set of examples documents**

 $p(0) = 0.8$

 $p(0|0) = 0.9$

 \[p(1) = 0.2 = 1 - p(0) \]

 \[p(1|0) = 0.1 = 1 - p(0|0) \]

 \[p(0|1) = 0.4 = p(1|0) p(0)/p(1) \]

 \[p(1|1) = 0.6 = 1 - p(0|1) \]

 \[\text{Model: Stationary Markov process} \]

 \[\text{Determine remaining probabilities} \]

 \[\text{The length of a message, } L(0), \text{ is the number of coding} \]

 \[\text{digits assigned to it. Therefore, the average message length is} \]

 \[L_{av} = \sum P(L(0)) \]

 \[\text{The term "redundancy" has been defined by Shannon1 as a property of codes. A "minimum-redundancy code"} \]

 \[\text{1 J. B. Frenkel, "The Transmission of Information," Technical} \]

 \[\text{Report No. 14, Research Laboratory of Electronics, M.I.T.,} \]

 \[\text{Cambridge, Mass., 1948.} \]

 \[\text{2 G. K. Shaffer, "A Device for Quantizing, Graying, and Coding} \]

 \[\text{the Image." Electrical Engineering, Trans. M.I.T.} \]

 \[\text{Cambridge, Mass., 1947.} \]
Example: Conventional and Conditional Coding

Conditional Coding

<table>
<thead>
<tr>
<th>(a_k)</th>
<th>(p_k)</th>
<th>(\text{code})</th>
<th>(a_k)</th>
<th>(p_k)</th>
<th>(\text{code})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.9</td>
<td>0</td>
<td>0</td>
<td>0.4</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0.1</td>
<td>1</td>
<td>1</td>
<td>0.6</td>
<td>1</td>
</tr>
</tbody>
</table>

- \(H_0 = 0.4690\)
- \(\bar{\ell}_0 = 1\)
- \(H(S_n | S_{n-1}) = 0.5694\)
- \(\bar{\ell}_{\text{cond}} = 1\)

Conventional Coding

<table>
<thead>
<tr>
<th>(p_k)</th>
<th>(\text{code})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8</td>
<td>0</td>
</tr>
<tr>
<td>0.2</td>
<td>1</td>
</tr>
</tbody>
</table>

- \(H(S) = 0.7219\)
- \(\bar{\ell}_{\text{conv}} = 1\)

- Conditioning does not improve coding efficiency in our case
- No codeword can be shorter than one bit, hence \(\bar{\ell} \geq 1\)
- Problem for sources with probability masses \(\gg 0.5\)

- **How can we increase coding efficiency?**
Variable-Length Coding For Blocks of Symbols

Block Codes
- Design variable length code for blocks of $N > 2$ symbols
- The N symbols of a block are jointly coded
- Optimal block code: Huffman algorithm for N-dimensional joint pmf
 \[p(s_0, s_1, \cdots, s_{N-1}) = P(S_0 = s_0, S_1 = s_1, \cdots, S_{N-1} = s_{N-1}) \]

Block Huffman Coding for Black and White Document Scans

<table>
<thead>
<tr>
<th>$N = 2$ symbols</th>
<th>$N = 3$ symbols \rightarrow $\bar{\ell} = 0.65$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$s_0 s_1$</td>
<td>$s_0 s_1 s_2$</td>
</tr>
<tr>
<td>$p(s_0, s_1)$</td>
<td>$p(s_0, s_1, s_2)$</td>
</tr>
<tr>
<td>codewords</td>
<td>codewords</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>00 0.72 1</td>
<td>000 0.648 1</td>
</tr>
<tr>
<td>01 0.08 010</td>
<td>001 0.072 000</td>
</tr>
<tr>
<td>10 0.08 011</td>
<td>010 0.032 01000</td>
</tr>
<tr>
<td>11 0.12 00</td>
<td>011 0.048 0101</td>
</tr>
<tr>
<td></td>
<td>100 0.072 001</td>
</tr>
<tr>
<td></td>
<td>101 0.008 01001</td>
</tr>
<tr>
<td></td>
<td>110 0.048 0110</td>
</tr>
<tr>
<td></td>
<td>111 0.072 0111</td>
</tr>
</tbody>
</table>

$\bar{\ell}_2 = 1.44$
$\bar{\ell} = \bar{\ell}_2/2 = 0.72$
Block Entropy

Bounds on minimum average codeword length

- Let $\overline{\ell}_N$ denote the average codeword length for joint coding of N symbols.
- For combined alphabet: Same relationship as in scalar case.
- Minimum average codeword length is bounded by

$$E\{ - \log_2 p(S_0, \cdots, S_{N-1}) \} \leq \overline{\ell}_N < E\{ - \log_2 p(S_0, \cdots, S_{N-1}) \} + 1 \quad (11)$$

Block Entropy

- Lower bound for average codeword length for N symbols

$$H_N(S) = H(S_0, S_1, \cdots, S_{N-1})$$

$$= E\{ - \log_2 p(S_0, \cdots, S_{N-1}) \}$$

$$= - \sum_{a_0, a_1, \cdots, a_{N-1}} p(a_0, a_1, \cdots, a_{N-1}) \log_2 p(a_0, a_1, \cdots, a_{N-1}) \quad (12)$$
Bounds on Minimum Average Codeword Length

Variable Length Coding of Fixed-Length Symbol Blocks

- Bounds for minimum average codeword length per N symbols

$$H_N(S) \leq \bar{\ell}_N < H_N(S) + 1 \quad (13)$$

- Bounds for minimum average codeword length per symbol

$$\frac{H_N(S)}{N} \leq \bar{\ell} < \frac{H_N(S) + 1}{N} \quad (14)$$

Chain Rule for Entropies

- Remember: Conditional probabilities

$$p(s_0, s_1, \cdots, s_{N-1}) = p(s_0) \cdot p(s_1 | s_0) \cdot p(s_2 | s_0, s_1) \cdots p(s_{N-1} | s_0, \cdots, s_{N-2})$$

- Consequence: Chain rule for entropies

$$H(S_0, S_1, \cdots, S_{N-1}) = H(S_0) + H(S_1 | S_0) + H(S_2 | S_0, S_1) + \cdots + H(S_{N-1} | S_0, \cdots, S_{N-2}) \quad (15)$$
Properties of Block Entropy

Block Entropy vs Conditional Entropy

- Remember: Chain rule

\[H(S_0, S_1, \cdots, S_{N-1}) = H(S_0) + H(S_1 | S_0) + H(S_2 | S_0, S_1) + \cdots \]
\[\cdots + H(S_{N-1} | S_0, \cdots, S_{N-2}) \]

- Remember: Conditioning never increases entropy

\[H(S_0, S_1, \cdots, S_{N-1}) \geq N \cdot H(S_{N-1} | S_0, \cdots, S_{N-2}) \] (16)

Block Entropy for Different Block Sizes

- Remember: Conditional probabilities

\[p(s_0, s_1, \cdots, s_{N-1}) = p(s_0, \cdots, s_{N-2}) \cdot p(s_{N-1} | s_0, \cdots, s_{N-2}) \]

- Consequence for block entropy

\[H(S_0, \cdots, S_{N-1}) = H(S_0, \cdots, S_{N-2}) + H(S_{N-1} | S_0, \cdots, S_{N-2}) \] (17)
Increasing Block Size Never Increases Lower Bound

Effect of Increasing Block Size

- For stationary random processes, we have shown

\[
H_N(S) = H_{N-1}(S) + H(S_n \mid S_{n-1}, \ldots, S_{n-N+1})
\]

\[
H_N(S) \geq N \cdot H(S_n \mid S_{n-1}, \ldots, S_{n-N+1})
\]

- Combining these relationships yields

\[
N \cdot H_N(S) \leq N \cdot H_{N-1}(S) + H_N(S)
\]

\[
(N - 1) \cdot H_N(S) \leq N \cdot H_{N-1}
\]

⇒ Hence: **Increasing block size never increases lower bound**

\[
\frac{H_N(S)}{N} \leq \frac{H_{N-1}(S)}{N - 1}
\] \hspace{1cm} (18)

⇒ Equality if \(H(S_n \mid S_{n-1}, \ldots) = H(S_n) \) (iid processes)
Entropy Rate

- Definition of entropy rate

\[
\bar{H}(S) = \lim_{N \to \infty} \frac{H(S_0, \cdots, S_{N-1})}{N} = \lim_{N \to \infty} \frac{H_N(S)}{N}
\]

- Limit (for \(N \to \infty \)) of lower bound for block coding
- The limit always exists for stationary random sources

Fundamental Lossless Source Coding Theorem

- Average codeword length for all lossless codes is bounded by

\[
\bar{\ell} \geq \bar{H}(S) = \lim_{N \to \infty} \frac{H_N(S)}{N}
\]

- Asymptotically achievable with block Huffman coding for \(N \to \infty \)
- Size of codeword tables exponentially increases with \(N \)
Entropy Rate for Special Sources

IID Processes

- Use chain rule for entropies

\[
\bar{H}(S) = \lim_{N \to \infty} \frac{1}{N} H(S_0, S_1, \cdots, S_{N-1})
\]

\[
= \lim_{N \to \infty} \frac{1}{N} \left(H(S_0) + H(S_1 | S_0) + H(S_2 | S_0, S_1) + \cdots \right)
\]

\[
= \lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} H(S_n)
\]

\[
= \lim_{N \to \infty} \frac{1}{N} \left(N \cdot H(S) \right)
\]

\[
= H(S)
\] \quad (21)

- Note: Block Huffman coding may still improve coding efficiency compared to scalar Huffman coding
Entropy Rate for Special Sources

Stationary Markov Processes

- Use chain rule for entropies

\[
\bar{H}(S) = \lim_{N \to \infty} \frac{1}{N} H(S_0, S_1, \ldots, S_{N-1})
\]

\[
= \lim_{N \to \infty} \frac{1}{N} \left(H(S_0) + H(S_1 \mid S_0) + H(S_2 \mid S_0, S_1) + \cdots \right)
\]

\[
= \lim_{N \to \infty} \frac{1}{N} \left(H(S) + (N - 1) \cdot H(S_n \mid S_{n-1}) \right)
\]

\[
= \lim_{N \to \infty} \frac{H(S)}{N} + \lim_{N \to \infty} \frac{N - 1}{N} H(S_n \mid S_{n-1})
\]

\[
= H(S_n \mid S_{n-1})
\] \hspace{2cm} (22)

- Note: Can also use conditional block Huffman coding
- Switch block code based on conditional variable
Example: Stationary Markov Process

Markov Source

| a | $p(a|a_0)$ | $p(a|a_1)$ | $p(a|a_2)$ | $H(S)$ | $\bar{H}(S)$ |
|-----|------------|------------|------------|--------|-------------|
| a_0 | 0.90 | 0.15 | 0.05 | 1.2575 | 0.7331 |
| a_1 | 0.05 | 0.80 | 0.05 | 0.9079 | 0.9150 |
| a_2 | 0.05 | 0.05 | 0.60 | 0.8642 | 0.8690 |

<table>
<thead>
<tr>
<th>N</th>
<th>$\frac{H_N(S)}{N}$</th>
<th>$\bar{\ell} = \frac{\bar{\ell}_N}{N}$</th>
<th>number of codewords</th>
<th>Scalar Huffman code:</th>
<th>Conditional Huffman code:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.2575</td>
<td>1.3556</td>
<td>3</td>
<td>$\bar{\ell} = 1.3556$</td>
<td>$\bar{\ell} = 1.1578$</td>
</tr>
<tr>
<td>2</td>
<td>0.9953</td>
<td>1.0094</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.9079</td>
<td>0.9150</td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.8642</td>
<td>0.8690</td>
<td>81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.8380</td>
<td>0.8462</td>
<td>243</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.8205</td>
<td>0.8299</td>
<td>729</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.8080</td>
<td>0.8153</td>
<td>2187</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.7987</td>
<td>0.8027</td>
<td>6561</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.7914</td>
<td>0.7940</td>
<td>19683</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example for Block Huffman Code: CBF in MPEG-2

Y 0/1 0/1 0/1
0/1 0/1

Cb 0/1

Cr 0/1

coded_block_pattern = xxxxxx (bit mask)
(values: 0..63)

Table B.9 – Variable length codes for coded_block_pattern

<table>
<thead>
<tr>
<th>coded_block_pattern VLC code</th>
<th>cbp</th>
<th>coded_block_pattern VLC code</th>
<th>cbp</th>
</tr>
</thead>
<tbody>
<tr>
<td>111</td>
<td>60</td>
<td>0001 1100</td>
<td>35</td>
</tr>
<tr>
<td>1101</td>
<td>4</td>
<td>0001 1011</td>
<td>13</td>
</tr>
<tr>
<td>1100</td>
<td>8</td>
<td>0001 1010</td>
<td>49</td>
</tr>
<tr>
<td>1011</td>
<td>16</td>
<td>0001 1001</td>
<td>21</td>
</tr>
<tr>
<td>1010</td>
<td>32</td>
<td>0001 1000</td>
<td>41</td>
</tr>
<tr>
<td>1001 1</td>
<td>12</td>
<td>0001 0111</td>
<td>14</td>
</tr>
<tr>
<td>1001 0</td>
<td>48</td>
<td>0001 0110</td>
<td>50</td>
</tr>
<tr>
<td>1000 1</td>
<td>20</td>
<td>0001 0101</td>
<td>22</td>
</tr>
<tr>
<td>1000 0</td>
<td>40</td>
<td>0001 0100</td>
<td>42</td>
</tr>
<tr>
<td>0111 1</td>
<td>28</td>
<td>0001 0011</td>
<td>15</td>
</tr>
<tr>
<td>0111 0</td>
<td>44</td>
<td>0001 0010</td>
<td>51</td>
</tr>
</tbody>
</table>

(continued)
V2V Codes

Generalization of Block Codes

- Assign codewords to **symbol sequences of variable length**
- How to select symbol sequences?
 - All messages must be representable by symbol sequences
 - Desirable: Redundancy-free set of symbol sequences

Examples

- Consider binary symbol alphabet $\mathcal{A} = \{a, b\}$

<table>
<thead>
<tr>
<th>code A</th>
<th>code B</th>
<th>code C</th>
</tr>
</thead>
<tbody>
<tr>
<td>aaaaa 0</td>
<td>aaa 000</td>
<td>aaaa 0</td>
</tr>
<tr>
<td>aaab 10</td>
<td>aa 01</td>
<td>aaab 10</td>
</tr>
<tr>
<td>aab 110</td>
<td>a 1</td>
<td>aab 110</td>
</tr>
<tr>
<td>bba 1110</td>
<td>b 0010</td>
<td>ab 1110</td>
</tr>
<tr>
<td>ba 1111</td>
<td>bb 0011</td>
<td>b 1111</td>
</tr>
<tr>
<td>abbbb... ?</td>
<td>redundant!</td>
<td>suitable</td>
</tr>
</tbody>
</table>
Suitable Set of Variable-Length Symbol Sequences

Finite alphabet of M letters

- Select symbol sequences that are representable by **full M-ary tree**

- All messages are representable by a concatenation of symbol sequences
- Redundancy-free set of symbol sequences
- Instantaneous encodable codes
V2V Codes as Double Tree

IID Source

<table>
<thead>
<tr>
<th>symbol</th>
<th>probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0.80</td>
</tr>
<tr>
<td>b</td>
<td>0.15</td>
</tr>
<tr>
<td>c</td>
<td>0.05</td>
</tr>
</tbody>
</table>

- **Entropy Rate:** \(\bar{\mathcal{H}}(S) = 0.88418 \) (marginal entropy)
- **Scalar Huffman:** \(\bar{\ell} = 1.2 \) (3 codewords)
- **2-Symbol Blocks:** \(\bar{\ell} = 0.93375 \) (9 codewords)
- **V2V Code:** \(\bar{\ell} = 0.88934 \) (7 codewords)
- **Redundancy:** \(\rho = 0.00516 \) (0.58%)
V2V Code Design

- Choose set of symbol sequences that are representable by full M-ary tree
- Determine pmf of symbol sequences (leaf nodes of the M-ary tree)
- Design Huffman code for pmf of variable-length symbol sequences

Average Codeword Length of V2V Codes

- Given the pmf for the leaf nodes, the average codeword length is given by

\[
\bar{\ell} = \frac{\sum_{k=0}^{L-1} p_k \ell_k}{\sum_{k=0}^{L-1} p_k n_k} = \frac{\text{average codeword length per sequence}}{\text{average number of symbols per sequence}} \tag{23}
\]

with
- L: number of symbols sequences (leaf nodes)
- p_k: probability of k-th symbol sequence
- ℓ_k: length of codeword assigned to k-th symbol sequence
- n_k: number of symbols in k-th symbol sequence
PMF for Symbol Sequences

How to determine pmf for variable-length sequences?

- In general: Probability that a new symbol sequence starts depends on previous symbols in message
 - Probability of a symbol sequence $\mathbf{a} = (a_0, a_1, \cdots, a_{K-1})$

$$p(\mathbf{a}) = p(a_0 \mid \mathcal{B}) p(a_1 \mid a_0, \mathcal{B}) \cdots p(a_{K-1} \mid a_0, \cdots, a_{K-2}, \mathcal{B}) \quad (24)$$

with \mathcal{B} being the event that the preceding message symbols were coded using a complete symbol sequence of the given set (V2V code tree)

- Conditional pmfs $p(a_m \mid a_0, \cdots, a_{m-1}, \mathcal{B})$ are given by
 - Conditional pmfs $p(a_m \mid a_0, \cdots, a_{m-1})$ of the random process
 - Structure of the V2V code (M-ary symbol tree)

IID Processes

- No dependencies on previous symbols

$$p(\mathbf{a}) = p(a_0) p(a_1) \cdots p(a_{K-1}) \quad (25)$$
PMF for Symbol Sequences

Markov Processes

- Probability of a symbol sequence $\mathbf{a} = (a_0, a_1, \cdots, a_{K-1})$ is given by

$$p(\mathbf{a}) = p(a_0 | \mathcal{B}) p(a_1 | a_0) p(a_2 | a_1) \cdots p(a_{K-1} | a_{K-2}) \quad (26)$$

- Probability that a new symbol sequence starts with letter a_m is given by

$$p(a_m | \mathcal{B}) = \sum_{k=0}^{L-1} p(a_m | a_{nk-1}^k) \cdot p(a_{nk-1}^k | a_{nk-2}^k) \cdots \cdot p(a_1^k | a_0^k) \cdot p(a_0^k | \mathcal{B}) \quad (27)$$

with

- L : number of symbol sequences
- n_k : number of symbols in k-th symbol sequence
- a_n^k : n-th symbol in k-th symbol sequence

Together with the condition $\sum_m p(a_m | \mathcal{B}) = 1$ we have a linear equation system with a unique solution

\[\text{→ Can calculate all unknown probabilities } p(a_n | \mathcal{B}) \text{ and thus also the pmf for the symbol sequences (leaf nodes)} \]
Example for Binary Markov Source

Black and White Document Scan

| a | p(a|0) | p(a|1) | p(a) |
|---|-------|-------|------|
| 0 | 0.9 | 0.4 | 0.8 |
| 1 | 0.1 | 0.6 | 0.2 |

sequences

\[
p(0|B) = p(0|B) \cdot p(0|0) \cdot p(0|0) \cdot p(0|0) \cdot p(0|0) \cdot p(0|0) + p(0|B) \cdot p(0|0) \cdot p(0|0) \cdot p(0|0) \cdot p(1|0) \cdot p(0|1) + p(0|B) \cdot p(0|0) \cdot p(0|0) \cdot p(1|0) \cdot p(0|1) + p(0|B) \cdot p(0|0) \cdot p(1|0) \cdot p(0|1) + p(0|B) \cdot p(1|0) \cdot p(0|1) + p(1|B) \cdot p(0|1) \cdot p(0|0) + p(1|B) \cdot p(1|1) \cdot p(0|1) + p(1|B) \cdot p(1|1) \cdot p(1|1) \cdot p(0|1) + p(1|B) \cdot p(1|1) \cdot p(0|1) \cdot p(0|1) + p(1|B) \cdot p(1|1) \cdot p(1|1) \cdot p(0|1) + p(1|B) \cdot p(1|1) \cdot p(1|1) \cdot p(0|1) +
\]

\[
p(0|B) = 0.72805 \cdot p(0|B) + 0.72 \cdot p(1|B)
\]

\[
= 0.72805 \cdot p(0|B) + 0.72 \cdot (1 - p(0|B))
\]

\[
\Longrightarrow p(0|B) = 0.725842 \quad \Longrightarrow p(1|B) = 0.274157
\]
Calculate pmf for symbol sequences and design Huffman code

\[p(a_0, a_1, \cdots, a_{k-1}) = p(a_0 | B) p(a_1 | a_0) \cdots p(a_{k-1} | a_{k-2}) \]

<table>
<thead>
<tr>
<th>sequences</th>
<th>probabilities</th>
<th>Huffman code</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000</td>
<td>0.476226</td>
<td>1</td>
</tr>
<tr>
<td>00001</td>
<td>0.052914</td>
<td>0100</td>
</tr>
<tr>
<td>0001</td>
<td>0.058793</td>
<td>0101</td>
</tr>
<tr>
<td>001</td>
<td>0.065326</td>
<td>0110</td>
</tr>
<tr>
<td>01</td>
<td>0.072584</td>
<td>0111</td>
</tr>
<tr>
<td>10</td>
<td>0.109663</td>
<td>001</td>
</tr>
<tr>
<td>110</td>
<td>0.065798</td>
<td>0000</td>
</tr>
<tr>
<td>111</td>
<td>0.098697</td>
<td>0001</td>
</tr>
</tbody>
</table>

\[\bar{H}(S) = 0.59049 \]
\[\bar{\ell} = 0.62561 \]
\[\varrho = 0.03512 \ (5.9\%) \]

More efficient than block Huffman code with the same number of codewords

\[\bar{\ell} = 0.65 \implies \varrho = 0.05951 \ (10.1\%) \]
Optimal V2V Codes?

Optimization Problem

- Best V2V code for given maximum number of codewords?
- No known design algorithm
- Exhaustive search over all possible symbol trees

Exhaustive V2V code design

- Investigate all symbol trees with a maximum number of leaf nodes
 - Create symbol tree
 - Calculate probabilities for leaf nodes (symbol sequences)
 - Determine codewords using Huffman algorithm
 - Calculate average codeword length
- Choose symbol tree (and code) that minimizes average codeword length
- Extremely complex
Example for Optimal V2V codes

Markov Source

| a | $p(a|a_0)$ | $p(a|a_1)$ | $p(a|a_2)$ |
|------|------------|------------|------------|
| a_0 | 0.90 | 0.15 | 0.05 |
| a_1 | 0.05 | 0.80 | 0.05 |
| a_2 | 0.05 | 0.05 | 0.60 |

$H(S) = 1.2575$

$\bar{H}(S) = 0.7331$

V2V:

<table>
<thead>
<tr>
<th>N_C</th>
<th>$\bar{\ell}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1.1784</td>
</tr>
<tr>
<td>7</td>
<td>1.0551</td>
</tr>
<tr>
<td>9</td>
<td>1.0049</td>
</tr>
<tr>
<td>11</td>
<td>0.9733</td>
</tr>
<tr>
<td>13</td>
<td>0.9412</td>
</tr>
<tr>
<td>15</td>
<td>0.9293</td>
</tr>
<tr>
<td>17</td>
<td>0.9074</td>
</tr>
<tr>
<td>19</td>
<td>0.8980</td>
</tr>
<tr>
<td>21</td>
<td>0.8891</td>
</tr>
</tbody>
</table>

Scalar Huffman code:

$\bar{\ell} = 1.3556$

Conditional Huffman code:

$\bar{\ell} = 1.1578$

Block Huffman code:

$N_C = 9 : \bar{\ell} = 1.0094$

$N_C = 27 : \bar{\ell} = 0.9150$

(N_C: number of codewords)
In Practice

- Typically: Only structured V2V codes
- Set of symbol sequences follows a certain structure

Well-Known Example: Run-Level Coding

- Often: Long sequences of symbols equal to zero
- Map sequence a symbols (transform coefficients) into (run,level) pairs, including a special end-of-block (eob) symbol
 - \textbf{level}: value of next non-zero symbol
 - \textbf{run}: number of zero symbols that precede next non-zero symbol
 - \textbf{eob}: all following symbols are equal to zero (end-of-block)
- Assign codewords to (run,level) pairs (including eob symbol)

Example:

- 64 symbols: 5 3 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 ...
- (run,level) pairs: (0,5) (0,3) (3,1) (1,1) (2,1) (eob)
Run-Level Coding in MPEG-2 Video

Table B.14 – DCT coefficients Table zero

<table>
<thead>
<tr>
<th>Variable length code (Note 1)</th>
<th>Run</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 (Note 2)</td>
<td>End of Block</td>
<td></td>
</tr>
<tr>
<td>1 s (Note 3)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>11 s (Note 4)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>011 s</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0100 s</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>0101 s</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>0010 1 s</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>0011 1 s</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>0011 0 s</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>0001 10 s</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0001 11 s</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>0001 01 s</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>0001 00 s</td>
<td>7</td>
<td>1</td>
</tr>
</tbody>
</table>

(continued)
Adaptive VLC codes

In Practice

- Messages with different properties
 - Classical music has other properties than heavy metal
 - MRT images have other properties than natural images
 - Cartoon movies have other properties than documentaries
- Messages itself have typically instationary statistical properties

➤ Optimize code tables for actual data

Adaptation of Variable-Length Codes

Two basic approaches

1. **Forward adaptation**
 - Transmit adaptation signal (pmf, code, ...) as side information

2. **Backward adaptation**
 - Adapt code simultaneously at encoder and decoder

➤ Possible to combine forward and backward adaptation
Forward Adaptation

Principle

- Gather statistics for large enough block of source symbols
- Transmit adaptation signal to decoder (e.g., at start of message)
 - Probability mass function
 - Codeword table
- Disadvantage: Increased bit rate due to side information
- Example: JPEG: Transmission of codeword table

![Diagram of the forward adaptation process]

message → delay → compute adaptation data → encoding → channel → decoding → message
Adaptive Variable-Length Codes

Backward Adaptation

Principle

- Gather statistics at both encoder and decoder
- Adapt code simultaneously at encoder and decoder during coding
 - Probability mass functions
 - Codeword tables
- Disadvantage: Decreased error robustness

Example: H.264/AVC and H.265/HEVC: Adaptive arithmetic coding

![Diagram of message encoding and decoding with backward adaptation](image)

T. Wiegand (TU Berlin) — Image and Video Coding: Lossless Coding III
Shannon-Fano-Elias Coding and Arithmetic Coding

Variable-Length Codes

- Optimal code for given pmf: Huffman code
- Discussed: Scalar codes, conditional codes, block codes, V2V codes
- Scalar and conditional codes can be very inefficient
- Entropy rate can be asymptotically achieved using block codes ($N \rightarrow \infty$)
- Impractical: Codeword tables grow exponentially with N

Practical Block Codes

- **Shannon-Fano-Elias codes**
 - Sub-optimal block codes (still close to optimal for large N)
 - Iterative construction of codewords (no need to store codeword table)
- **Arithmetic codes**
 - Fixed-precision variant of Shannon-Fano-Elias codes
 - State-of-the art in lossless coding (very flexible)
Shannon-Fano-Elias Coding: Framework

Random Process Model

- Assume stationary discrete random process \(S = \{ S_n \} \)
- Statistical properties are given by \(N \)-th order joint pmf
 \[
 p(s) = P(S = s) = P(S_0 = s_0, S_1 = s_1, \cdots, S_{N-1} = s_{N-1})
 \]
- Messages \(s^{(L)} = \{ s_0, s_1, s_2, \cdots, s_{L-1} \} \) of \(L \) symbols are finite-length realizations of random process \(S \)

Coding Framework

- Code blocks of \(N \) symbols (\(N \) is known to encoder and decoder)
- Consider two configurations:
 1. \(N < L \): Message is split into multiple blocks of symbols
 - Prefix code
 2. \(N = L \): All symbols of a message are jointly coded
 - No prefix code required
Shannon-Fano-Elias Coding

Basic Idea

- Order all symbol sequences with N symbols: s_0, s_1, s_2, \cdots
- Each symbol sequence is associated with an interval of the cdf $F(s)$
- Transmit any number (as binary fraction) inside the corresponding interval
 - Required number of bits depends on probability of symbol sequence

Transmitted binary fraction: 0.011_b (codeword “011”)
Mapping of Symbol Sequences to Intervals

Order of Symbol Sequences

- Require a defined order of symbol sequences (with N symbols)
- Order $\{s_0, s_1, s_2, \cdots\}$ must be known to encoder and decoder

Mapping to Intervals

- Each symbol sequence s_k is mapped to an half-open interval $\mathcal{I}(s_k) \subset [0, 1)$

$$\mathcal{I}(s_k) = \left[L(s_k), U(s_k) \right) = \left[L(s_k), L(s_k) + W(s_k) \right)$$ \hspace{1cm} (29)

- Intervals $\mathcal{I}(s_k)$ can be characterized by
 - lower interval boundary $L(s_k)$
 $$L(s_k) = F(s_{k-1}) = P(S < s_k) = \sum_{\forall i < k} p(s_i)$$ \hspace{1cm} (30)
 - interval width $W(s_k)$
 $$W(s_k) = F(s_k) - F(s_{k-1}) = P(S = s_k) = p(s_k)$$ \hspace{1cm} (31)
Unique Identification of Intervals

Disjoint Intervals
- Half-open intervals $I(s_k)$ are disjoint by definition.
- All real numbers $v \in [0, 1)$ belong to exactly one interval.

Representative Number Inside Interval
- Transmit any number $v \in I(s_k)$ for uniquely identifying the interval $I(s_k)$ and, thus, the symbol sequence s_k.
- Represent number $v \in I(s_k)$ as binary fraction with K bits of precision:
 \[v = (0.b_0 b_1 b_2 \cdots b_{K-1})_b = \sum_{i=0}^{K-1} b_i \cdot 2^{-(i+1)} \] (32)
 - Number v is an integer multiple of 2^{-K}.
 - Codeword is given by bit sequence $b = \{b_0, b_1, b_2, \cdots, b_{K-1}\}$ of K bits.
How Many Bits for Identifying an Interval?

Required Number of Bits

\[
(\text{i} - 2) \cdot 2^{-K} \quad (\text{i} - 1) \cdot 2^{-K} \quad \text{i} \cdot 2^{-K} \quad (\text{i} + 1) \cdot 2^{-K} \quad (\text{i} + 2) \cdot 2^{-K}
\]

- Distance between successive binary fractions of \(K\) bits is \(2^{-K}\)

⇒ For guaranteeing that a binary fraction of \(K\) bits falls inside an interval \(\mathcal{I}(s_k)\) of width \(W(s_k)\), we require

\[
W(s_k) \geq 2^{-K}
\]

\[
K \geq -\log_2 W(s_k)
\]

(33)

⇒ Hence, we choose

\[
K = K(s_k) = \lceil -\log_2 W(s_k) \rceil = \lceil -\log_2 p(s_k) \rceil
\]

(34)
How to Select Interval Representative and Codeword?

Interval Representative

- Round up lower interval boundary L to next binary fraction of K bits.
- For interval $I = [L, L + W)$, choose binary number v according to

$$v = \lceil L \cdot 2^K \rceil \cdot 2^{-K} \quad \text{with} \quad K = \lceil -\log_2 W \rceil$$

Codewords

- K fractional bits of interval representative $v = (0.b_0 b_1 b_2 \cdots b_{K-1})_b$
- Binary representation $[b_0 b_1 \cdots b_{K-1}]$ with K bits of integer number $z = \lceil L \cdot 2^K \rceil = v \cdot 2^K$
Shannon-Fano-Elias Encoding: Illustration

- Codeword $b(s_k)$: binary representation of z with K bits
- Integer part: $z = \lfloor L \cdot 2^K \rfloor$
- Number of bits: $K = \lceil -\log_2 W \rceil$
- $W = p(s_k)$
- $L = \sum_{i<k} p(s_i)$
- $\mathcal{I}(s_k) = [L, L+W)$

![Diagram of Shannon-Fano-Elias Encoding](image-url)
Shannon-Fano-Elias Codes / Encoding Process

Shannon-Fano-Elias Encoding: Summary

Determination of Codewords

- Given: Ordered set of symbol sequences \(\{ s_k \} \) with associated pmf \(\{ p_k \} \)
- Construct codeword \(b_k = b(s_k) \) for any particular sequence \(s_k \) by
 1. Determine interval width \(W_k \) and lower interval boundary \(L_k \)
 \[
 W_k = p_k \quad \text{(37)}

 L_k = \sum_{i < k} p_i \quad \text{(38)}
 \]
 2. Determine codeword length \(K_k \)
 \[
 K_k = \lceil -\log_2 W_k \rceil \quad \text{(39)}
 \]
 3. Determine representative integer \(z_k \)
 \[
 z_k = \lceil L_k \cdot 2^{K_k} \rceil \quad \text{(40)}
 \]
 4. Codeword \(b_k \): Binary representation of \(z_k \) with \(K_k \) bits
Shannon-Fano-Elias Codes / Decoding Process

Shannon-Fano-Elias Decoding: Illustration

read codeword \(b \):
binary representation of \(z \) with \(K \) bits

representative value:
\[v = z \cdot 2^{-K} \]

decoding process:
Compare \(v \) with upper interval boundaries \(U = L + W \) in increasing order

- \(U_k > v \)
- \(U_{k-1} \leq v \)
- \(\vdots \)
- \(U_0 \leq v \)

\[U_k = \sum_{i \leq k} p(s_i) \]
Shannon-Fano-Elias Codes / Decoding Process

Shannon-Fano-Elias Decoding: Summary

Decoding of a Symbol Sequence

- Given: Ordered set of symbol sequences \(\{ s_k \} \) with associated pmf \(\{ p_k \} \)

1. Read codeword \(b \): Binary representation of integer \(z \) with \(K \) bits

2. Initialization of iterative decoding
 - representative value: \(v = z \cdot 2^{-K} \)
 - iteration index: \(k = 0 \)
 - upper interval boundary: \(U_0 = L_0 + W_0 = p_0 \)

3. Compare \(v \) with \(U_k \)
 - If \(v < U_k \)
 - Output decoded symbol sequence \(s_k \)
 - Terminate decoding
 - Otherwise (\(v \geq U_k \))
 - Update iteration index: \(k = k + 1 \)
 - Update upper interval boundary: \(U_k = U_{k-1} + p_k \)
 - Goto step 3
Summary: Extended Variable-Length Coding

Conditional Codes
- Switching between codeword tables (depending on previous symbol(s))
- Bound for average codeword length: Conditional entropy
- Conditioning never increases average codeword length or entropy

Block Codes
- Variable-length code for blocks of N symbols
- Bound for average codeword length: Block entropy divided by N
- Increasing block size never increases average codeword length or entropy
- Fundamental lossless coding theorem: $\bar{\ell} \geq \bar{H}$ (entropy rate)

V2V Codes
- Assign codewords to variable-length symbol sequences
- Important example: Run-level coding of transform coefficients

Adaptive Variable-Length Codes
- Adapt code during encoding/decoding (forward/backward adaptation)
Intermediate Summary: Shannon-Fano-Elias Coding

Shannon-Fano-Elias Codes

- Special Block Code
- In general: Worse than Huffman code for same block size
- On-the-fly construction of codewords (no need to store codeword table)
- On-the-fly decoding of messages

Next

- **Iterative encoding and decoding** for Shannon-Fano-Elias codes
- **Arithmetic coding** as practical implementation of Shannon-Fano-Elias codes