
Arithmetic Coding Revisited

ALISTAIR MOFFAT
The University of Melbourne
RADFORD M. NEAL
University of Toronto
and
IAN H. WITTEN
The University of Waikato

Over the last decade, arithmetic coding has emerged as an important compression tool. It is
now the method of choice for adaptive coding on multisymbol alphabets because of its speed,
low storage requirements, and effectiveness of compression. This article describes a new
implementation of arithmetic coding that incorporates several improvements over a widely
used earlier version by Witten, Neal, and Cleary, which has become a de facto standard. These
improvements include fewer multiplicative operations, greatly extended range of alphabet
sizes and symbol probabilities, and the use of low-precision arithmetic, permitting implemen-
tation by fast shift/add operations. We also describe a modular structure that separates the
coding, modeling, and probability estimation components of a compression system. To moti-
vate the improved coder, we consider the needs of a word-based text compression program. We
report a range of experimental results using this and other models. Complete source code is
available.

Categories and Subject Descriptors: E.4 [Data]: Coding and Information Theory—data com-
paction and compression; E.1 [Data]: Data Structures

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Approximate coding, arithmetic coding, text compression,
word-based model

This investigation was supported by the Australian Research Council and the Natural
Sciences and Engineering Research Council of Canada. A preliminary presentation of this
work was made at the 1995 IEEE Data Compression Conference.
Authors’ addresses: A. Moffat, Department of Computer Science, The University of Melbourne,
Parkville, Victoria 3052, Australia; email: alistair@cs.mu.oz.au; R. M. Neal, Department of
Statistics and Department of Computer Science, University of Toronto, Canada; email:
radford@cs.utoronto.ca; I. H. Witten, Department of Computer Science, The University of
Waikato, Hamilton, New Zealand; email: ihw@waikato.ac.nz.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1998 ACM 1046-8188/98/0700–0256 $5.00

ACM Transactions on Information Systems, Vol. 16, No. 3, July 1998, Pages 256–294.

1. INTRODUCTION

During its long gestation in the 1970’s and early 1980’s, arithmetic coding
[Rissanen 1976; Rissanen and Langdon 1979; Rubin 1979; Rissanen and
Langdon 1981; Langdon 1984] was widely regarded more as a curiosity
than a practical coding technique. This was particularly true for applica-
tions where the alphabet has many symbols, as Huffman coding is usually
reasonably effective in such cases [Manstetten 1992]. One factor that
helped arithmetic coding gain the popularity it enjoys today was the
publication of source code for a multisymbol arithmetic coder by Witten et
al. [1987] in Communications of the ACM, which we refer to as the CACM
implementation. One decade later, our understanding of arithmetic coding
has further matured, and it is timely to review the components of that
implementation and summarize the improvements that have emerged. We
also describe a novel, previously unpublished, method for performing the
underlying calculation needed for arithmetic coding. Software is available
that implements the revised method.

The major improvements discussed in this article and implemented in
the software are as follows:

—Enhanced models that allow higher-performance compression.

—A more modular division into modeling, estimation, and coding sub-
systems.

—Data structures that support arithmetic coding on large alphabets.

—Changes to the coding procedure that reduce the number of multiplica-
tions and divisions and which permit most of them to be done with
low-precision arithmetic.

—Support for larger alphabet sizes and for more accurate representations
of probabilities.

—A reformulation of the decoding procedure that greatly simplifies the
decoding loop and improves decoding speed.

—An extension providing efficient coding for binary alphabets.

To motivate these changes, we examine in detail the needs of a word-based
model for text compression. While not the best-performing model for text
(see, for example, the compression results listed by Witten et al. [1994]),
word-based modeling combines several attributes that test the capabilities
and limitations of an arithmetic coding system.

The new implementation of arithmetic coding is both more versatile and
more efficient than the CACM implementation. When combined with the
same character-based model as the CACM implementation, the changes
that we advocate result in up to two-fold speed improvements, with only a
small loss of compression. This faster coding will also be of benefit in any
other compression system that makes use of arithmetic coding (such as the
block-sorting method of Burrows and Wheeler [1994]), though the percent-

Arithmetic Coding Revisited • 257

ACM Transactions on Information Systems, Vol. 16, No. 3, July 1998.

age of overall improvement will of course vary depending on the time used
in other operations and on the exact nature of the hardware being used.

The new implementation is written in C, and is publicly available
through the Internet by anonymous ftp, at munnari.oz.au , directory
/pub/arith _coder , file arith _coder.tar.Z or arith _coder.tar.gz .
The original CACM package [Witten et al. 1987] is at ftp.cpsc.ucalgary.
ca in file /pub/projects/ar.cod/cacm-87.shar . Software that imple-
ments the new method for performing the arithmetic coding calculations,
but is otherwise similar to the CACM version, can be found at ftp.cs.

toronto.edu in the directory /pub/radford , file lowp _ac.shar .
In the remainder of this introduction we give a brief review of arithmetic

coding, describe modeling in general, and word-based models in particular,
and discuss the attributes that the arithmetic coder must embody if it is to
be usefully coupled with a word-based model. Section 2 examines the
interface between the model and the coder, and explains how it can be
designed to maximize their independence. Section 3 shows how accurate
probability estimates can be maintained efficiently in an adaptive compres-
sion system, and describes an elegant structure due to Fenwick [1994]. In
Section 4 the CACM arithmetic coder is reexamined, and our improvements
are described. Section 5 analyzes the cost in compression effectiveness of
using low precision for arithmetic operations. Low-precision operations
may be desirable because they permit a shift/add implementation, details
of which are discussed in Section 6. Section 7 describes the restricted coder
for binary alphabets, and examines a simple binary model for text compres-
sion. Finally, Section 8 reviews the results and examines the various
situations in which arithmetic coding should and should not be used.

1.1 The Idea of Arithmetic Coding

We now give a brief overview of arithmetic coding. For additional back-
ground the reader is referred to the work of Langdon [1984], Witten et al.
[1987; 1994], Bell et al. [1990], and Howard and Vitter [1992; 1994].

Suppose we have a message composed of symbols over some finite
alphabet. Suppose also that we know the probability of appearance of each
of the distinct symbols, and seek to represent the message using the
smallest possible number of bits. The well-known algorithm of Huffman
[1952] takes a set of probabilities and calculates, for each symbol, a code
word that unambiguously represents that symbol. Huffman’s method is
known to give the best possible representation when all of the symbols
must be assigned discrete code words, each an integral number of bits long.
The latter constraint in effect means that all symbol probabilities are
approximated by negative powers of two. In an arithmetic coder the exact
symbol probabilities are preserved, and so compression effectiveness is
better, sometimes markedly so. On the other hand, use of exact probabili-
ties means that it is not possible to maintain a discrete code word for each
symbol; instead an overall code for the whole message must be calculated.

258 • A. Moffat et al.

ACM Transactions on Information Systems, Vol. 16, No. 3, July 1998.

The mechanism that achieves this operates as follows. Suppose that pi is
the probability of the ith symbol in the alphabet, and that variables L and
R are initialized to 0 and 1 respectively. Value L represents the smallest
binary value consistent with a code representing the symbols processed so
far, and R represents the product of the probabilities of those symbols. To
encode the next symbol, which (say) is the jth of the alphabet, both L and R
must be refined: L is replaced by L 1 RO

i51
j21pi and R is replaced by R z pj,

preserving the relationship between L, R, and the symbols so far processed.
At the end of the message, any binary value between L and L 1 R will
unambiguously specify the input message. We transmit the shortest such
binary string, c. Because c must have at least 2log2 R and at most
2log2 R 1 2 bits of precision, the procedure is such that a symbol with
probability pj is effectively coded in approximately 2log2 pj bits, thereby
meeting the entropy-based lower bound of Shannon [1948].

This simple description has ignored a number of important problems.
Specifically, the process described above requires extremely high precision
arithmetic, since L and R must potentially be maintained to a million bits
or more of precision. We may also wonder how best to calculate the
cumulative probability distribution, and how best to perform the arith-
metic. Solving these problems has been a major focus of past research, and
of the work reported here.

1.2 The Role of the Model

The CACM implementation [Witten et al. 1987] included two driver pro-
grams that coupled the coder with a static zero-order character-based
model, and with a corresponding adaptive model. These were supplied
solely to complete a compression program, and were certainly not intended
to represent excellent models for compression. Nevertheless, several people
typed in the code from the printed page and compiled and executed it,
only—much to our chagrin—to express disappointment that the new
method was inferior to widely available benchmarks such as Compress
[Hamaker 1988; Witten et al. 1988].

In fact, all that the CACM article professed to supply was a state-of-the
art coder with two simple, illustrative, but mediocre models. One can think
of the model as the “intelligence” of a compression scheme, which is
responsible for deducing or interpolating the structure of the input,
whereas the coder is the “engine room” of the compression system, which
converts a probability distribution and a single symbol drawn from that
distribution into a code [Bell et al. 1990; Rissanen and Langdon 1981]. In
particular, the arithmetic coding “engine” is independent of any particular
model. The example models in this article are meant purely to illustrate
the demands placed upon the coder, and to allow different coders to be
compared in a uniform test harness. Any improvements to the coder will

Arithmetic Coding Revisited • 259

ACM Transactions on Information Systems, Vol. 16, No. 3, July 1998.

primarily yield better compression efficiency, that is, a reduction in time or
space usage. Improvements to the model will yield improved compression
effectiveness, that is, a decrease in the size of the encoded data. In this
article we are primarily interested in compression efficiency, although we
will also show that the approximations inherent in the revised coder do not
result in any substantial loss of compression effectiveness.

The revised implementation does, however, include a more effective
word-based model [Bentley et al. 1986; Horspool and Cormack 1992; Moffat
1989], which represents the stream as a sequence of words and nonwords
rather than characters, with facilities for spelling out new words as they
are encountered using a subsidiary character mode. Since the entropy of
words in typical English text is around 10–15 bits each, and that of
nonwords is around 2–3 bits, between 12 and 18 bits are required to encode
a typical five-character word and the following one-character nonword.
Large texts are therefore compressed to around 30% of their input size (2.4
bits per character)—a significant improvement over the 55%–60% (4.4–4.8
bits per character) achieved by zero-order character-based models of En-
glish. Witten et al. [1994] give results comparing character-based models
with word-based models.

A word-based compressor can also be faster than a character-based one.
Once a good vocabulary has been established, most words are coded as
single symbols rather than as character sequences, reducing the number of
time-consuming coding operations required.

What is more relevant, for the purposes of this article, is that word-based
models illustrate several issues that do not arise with character-based
models:

—An efficient data structure is needed to accumulate frequency counts for
a large alphabet.

—Multiple coding contexts are necessary, for tokens, characters, and
lengths, for both words and nonwords. Here, a coding context is a
conditioning class on which the probability distribution for the next
symbol is based.

—An escape mechanism is required to switch from one coding context to
another.

—Data structures must be resizable because there is no a priori bound on
alphabet size.

All of these issues are addressed in this article.
Arithmetic coding is most useful for adaptive compression, especially

with large alphabets. This is the application envisioned in this article, and
in the design of the new implementation. For static and semistatic coding,
in which the probabilities used for encoding are fixed, Huffman coding is
usually preferable to arithmetic coding [Bookstein and Klein 1993; Moffat
and Turpin 1997; Moffat et al. 1994].

260 • A. Moffat et al.

ACM Transactions on Information Systems, Vol. 16, No. 3, July 1998.

2. COOPERATING MODULES

It is useful to divide the process of data compression into three logically
disjoint activities: modeling, statistics-gathering, and coding. This separa-
tion was first articulated by Rissanen and Langdon [1981], although the
CACM implementation of Witten et al. [1987] combined statistics gathering
with modeling to give a two-way split. This section describes the three-way
partition, which is reflected in our implementation by three cooperating
modules. Examples are given that show how the interfaces are used.

2.1 Modeling, Statistics, and Coding

Of the three modules, the most visible is that which performs the modeling.
Least visible is the coder. Between these two is the statistics module, which
manipulates a data structure to record symbol frequency counts (or some
other estimate of symbol probabilities). In detail, a statistics module used
with an arithmetic coder must be able to report the cumulative frequency of
all symbols earlier in the alphabet than a given symbol, and to record that
this symbol has occurred one more time. Both the model and the coder are
oblivious to the exact mechanism used to accomplish this: the model is
unaware of the probability attached to each symbol; and the coder is
unaware of symbol identifiers and the size of the alphabet. This organiza-
tion is shown in Figure 1.

The CACM implementation [Witten et al. 1987] has just one interface
level, reflecting the two-way modeling/coding division of activity. An array
cumfreq containing cumulative frequencies and an actual symbol identifier
s are passed from model to coder to achieve the transmission of each

Fig. 1. Modeling, statistics, and coder modules.

Arithmetic Coding Revisited • 261

ACM Transactions on Information Systems, Vol. 16, No. 3, July 1998.

symbol. This forces both modules to use an array to maintain their
information—an unnecessarily restrictive requirement. By divorcing the
statistics module from both model and coder, any suitable data structure
can be used to maintain the statistics. Section 3 below considers some
alternatives.

The main routines required to interface the modules are listed in Table I.
(The implementation includes several other routines, mainly for initializing
and terminating compression.) The routine install_symbol() in both encoder
and decoder has the same functionality as encode() except that no output
bits are transmitted or consumed: its purpose is to allow contexts to be
primed, as if text had preceded the beginning of the transmission.

The routine purge_context removes all records for that context, leaving it
as if it had just been created. This allows “synchronization points” to be
inserted in the compressed output using a finish_encode and start_encode
pair, from which points adaptive decoding can commence without needing
to process the entire compressed message. Purging model frequencies and
inserting synchronization points does, of course, reduce the compression
rate.

A zero-order character-based model requires just one context and rela-
tively simple control structures, as shown in the psuedocode of Algorithm
Zero-Order Character-Based (Figure 2), which closely corresponds to the
adaptive model described by Witten et al. [1987]. A context C is created,
install_symbol() is used to make each valid character available, and en-
code() is called once for each character in the input. The compressed
message is terminated by an end_of_message symbol which has also been
previously installed in C. The method of Algorithm Zero-Order Character-
Based can easily be extended to a first-order character-based model using
an array of contexts, one for each possible conditioning character. This
would require considerably more memory, but would improve the compres-
sion effectiveness without impacting execution speed. Many other modifica-
tions are possible.

Complex models require the use of multiple contexts. The word-based
model described in Section 1.2 uses six contexts: a zero-order context for
words, a zero-order context for nonwords (sequences of spaces and punctu-

Table I. Module Interface Functions

Module Encoder Decoder

Statistics C 4 create_context() C 4 create_context()
encode~C, s! s 4 decode~C!
install_symbol~C, s! install_symbol~C, s!
purge_context~C! purge_context~C!

Coder start_encode() start_decode()
arithmetic_encode~l, h, t! target 4 decode_target~t!

arithmetic_decode~l, h, t!
finish_encode() finish_decode()

262 • A. Moffat et al.

ACM Transactions on Information Systems, Vol. 16, No. 3, July 1998.

ation), a zero-order character context for spelling out new words, a zero-
order character context for spelling out new nonwords, and contexts for
specifying the lengths of words and of nonwords. The encoder for that
model is sketched as Algorithm Zero-Order Word-Based (Figure 3), except
that for brevity the input is treated as a sequence of words rather than
alternating “word, nonword” pairs and so only three contexts, denoted W,
C, and L, are used. To cater for nonwords as well requires additional
contexts W9, C9, and L9, along with an outer loop that alternates between
words and nonwords by using each set of contexts in turn. Note that
Algorithm Zero-Order Word-Based assumes that the length of each word is
bounded, so that context L can be initialized. In our implementation the
actual definition of a word was “a string of at most 16 alphanumeric
characters”; long symbols are handled by breaking them into shorter ones
with zero-length opposite symbols between.

Fig. 2. Algorithm Zero-Order Character-Based.

Arithmetic Coding Revisited • 263

ACM Transactions on Information Systems, Vol. 16, No. 3, July 1998.

The decoder, omitted in Figure 3, is the natural combination of the ideas
presented in Algorithms Zero-Order Character-Based (Figure 2) and Zero-
Order Word-Based (Figure 3).

2.2 Coding Novel Symbols

The character-based model of Algorithm Zero-Order Character-Based (Fig-
ure 2) codes at most 257 different symbols (256 different eight-bit charac-
ters plus the end_of_message symbol), all of which are made available in
that context by explicit install_symbol() calls. In contrast to this, in the
word-based model there is no limit to the number of possible symbols—the
number of distinct word tokens in an input stream might be hundreds,
thousands, or even millions. To cater for situations such as this in which
the alphabet size is indeterminate, the function call encode~C, s! returns a
flag escape_transmitted if the symbol s is not known in context C, or if, for
some other reason, s has zero probability. In this event, the word is

Fig. 3. Algorithm Zero-Order Word-Based.

264 • A. Moffat et al.

ACM Transactions on Information Systems, Vol. 16, No. 3, July 1998.

encoded using the length and character models, and is then installed into
the lexicon. As well as returning a flag to indicate a zero-probability
symbol, the encoder must also explicitly transmit an escape code to the
decoder so that the corresponding call decode~C! can similarly return an
exception flag.

This raises the vexatious question as to what probability should be
assigned to this escape code—the so-called zero-frequency problem. Of the
methods described in the literature (summarized by Moffat et al. [1994]),
we chose a modified version of method XC [Witten and Bell 1991] which we
call method AX, for “approximate X.” Method XC approximates the number
of symbols of frequency zero by the number of symbols of frequency one. If
t1 symbols have appeared exactly once, symbol si has appeared ci times,
and t 5 Oici is the total number of symbols that have been coded to date,
then the escape code probability pescape is given by t1/t and the probability
of symbol si is estimated as pi 5 ~1 2 t1/t! z ~ci /t!.

The drawback of method XC is the need for a two-stage coding process
when the symbol is not novel—one step to transmit the information “not
novel” (probability 1 2 t1/t), and a second to indicate which nonnovel
symbol it is (probability ci /t). It is not feasible to calculate the exact
probability for use in a single coding step, since the need to represent the
product pi restricts t to a very small range of values if overflow is to be
avoided (see also the discussion in Section 4 below). Instead, for method AX
we advocate

pescape 5 ~t1 1 1!/~t 1 t1 1 1!

pi 5 ci /~t 1 t1 1 1!.

The “11” allows novel events to be represented even when there are no
events of frequency one (in method XC this exception is handled by
reverting to another method called “method C” in the literature); and t1 is
incorporated additively in the denominator by taking a first-order binomial
approximation to ~1 2 t1/t!21. With this method a single coding step
suffices, as t 1 t1 1 1 can be represented in roughly half the number of
bits as the denominator t2 required by method XC. The difference is crucial,
since for flexibility we desire t to be similar in magnitude to the largest
integer that can be represented in a machine word. The change distorts the
probabilities slightly, but all zero-frequency methods are heuristics any-
way, and the effect is small.

Once the escape code has been transmitted, the new token can be spelled
out and added to the W context. Both encoder and decoder assign it the
next available symbol number, so there is no need to specify an identifier.

2.3 Storage Management

An industrial-strength compression system must provide some mechanism
to bound the amount of memory used during encoding and decoding. For

Arithmetic Coding Revisited • 265

ACM Transactions on Information Systems, Vol. 16, No. 3, July 1998.

example, some compressors reclaim list items using a least-recently-used
policy, so that the model structure continues to evolve when memory is
exhausted. Others purge the model when memory is full, but retain a
sliding window buffer of recent symbols so that a smaller replacement
model can be rebuilt (using install_symbol) immediately. The exact mecha-
nism used in any application will depend upon the needs of that applica-
tion, in particular, on the amount of memory consumed by the structural
model (Figure 1). Because of this dependence, the only facility we provide
in our implementation is the routine purge_context(), which removes all
records for that context, as if it had just been created. One rationalization
for this abrupt “trash and start again” approach is that memory is typically
so plentiful that trashing should be rare enough to cause little deteriora-
tion in the average compression rate. Furthermore, in the particular case of
the word-based model the impact is softened by the fact that the underlying
character-based models do not need to be purged, so transmission of novel
words while the lexicon is rebuilt is less expensive than it was originally. In
practice, purging of the lexicon in the word-based compressor is rare. A
memory limit of one megabyte is ample to process texts with a vocabulary
of about 30,000 distinct words, such as The Complete Works of Shakespeare.

3. DATA STRUCTURES

We now turn to the statistics module, which is responsible for managing
the data structure that records cumulative symbol frequencies. In particu-
lar, a call encode~C, s! to encode symbol s in context C must result in a call
to the coder module of arithmetic_encode~lC, s, hC, s, tC!, where lC, s and
hC, s are the cumulative frequency counts in context C of symbols respec-
tively prior to and including s, according to some symbol ordering, and tC is
the total frequency of all symbols recorded in context C, possibly adjusted
upward by the inclusion of a “count” for the escape symbol. To avoid
excessive subscripting, we suppress explicit references to the context C
whenever there is no ambiguity and use ls, hs, and t to denote the values
that must be calculated.

3.1 Ordered List

In the CACM implementation [Witten et al. 1987] cumulative frequency
counts are stored in an array, which is summed backward from the end of
the alphabet. The alphabet is ordered by decreasing symbol frequency so as
to place common symbols near the beginning. Symbols are indexed through
a permutation vector, allowing ls and hs to be calculated very quickly. In
order to increment the count of symbol s in the cumulative frequency array,
a loop is used to increment each symbol to the left of—that is, of greater
frequency than—s, thereby keeping the cumulative counts correct. To
maintain this structure, 3n words of storage are needed for an alphabet of
n symbols.

266 • A. Moffat et al.

ACM Transactions on Information Systems, Vol. 16, No. 3, July 1998.

Although compact compared to the demands of adaptive Huffman coders,
this mechanism is only effective for small alphabets, or for highly skewed
distributions. An alternative structure has been described which bounds
the number of loop iterations required to calculate the coding parameters
for each symbol by the number of bits produced when that symbol is
entropy-coded [Moffat 1990b]. The structure is asymptotically optimal for
both uniform and skew distributions, taking time linear in the number of
input symbols and output bits; it is also efficient in practice [Moffat et al.
1994]. About 4n words are required for an alphabet of n symbols.

3.2 Implicit Tree Structure

More recently, Fenwick [1994] proposed an implicit tree organization for
storing an array of cumulative frequency counts that preserves the symbol
ordering and so requires only n words to represent an n-symbol alphabet.
Fenwick’s method calculates and updates ls 5 O

i51
s21fs and hs 5 O

i51
s fs,

where fs is the observed frequency of symbol s, in Q~log n! time per symbol,
irrespective of the underlying entropy of the distribution.1 Although this is
suboptimal for very skewed distributions (see, for example, the results of
Moffat et al. [1994]), Fenwick’s method works well for most of the probabil-
ity distributions encountered in practice, and is employed in our revised
arithmetic coding implementation because of its low space requirements.

Fenwick proposed that a single array F@1. . . n# be used to record partial
cumulative frequencies in a regular pattern based upon powers of two. At
positions that are one less than a multiple of two the array records the
corresponding symbol frequency; at positions that are two less than a
multiple of four the value stored is the sum of the frequency for two
symbols; at positions that are four less than a multiple of eight the value
stored is the sum of the immediately preceding four symbol frequencies;
and so on.

Cumulative counts can be updated in logarithmic time in this structure
by using the following device to impose an implicit tree structure on the
array. Suppose that s is some symbol number in the range 1 # s # n.
Define backward~s! to be the integer obtained from s by subtracting the
binary number corresponding to the rightmost one-bit in s. For example,
the binary representation of 13 is 1101, and so backward~13! 5 11002 5
12; backward~12! 5 10002 5 8; and backward~8! 5 0. Similarly, define
forward~s! to be s 1 2 i where i is again the position of the rightmost
one-bit in s. For example, forward~13! 5 14, forward~14! 5 16, and for-
ward~16! 5 32. Both backward and forward can be readily implemented
using bitwise operations if integers are represented in two’s-complement

1We make use of the standard functional comparators O~!, Q~!, and V~! to mean “grows no
faster than,” “grows at the same rate as,” and “grows at least as quickly as,” respectively. For
precise definitions of these comparators see, for example, Cormen et al. [1990].

Arithmetic Coding Revisited • 267

ACM Transactions on Information Systems, Vol. 16, No. 3, July 1998.

form:2 backward~i! as either “i 2 (i AND 2 i)” or “i AND ~i 2 1!”; and
forward~i! as “i 1 (i AND 2 i)”, where AND is a bitwise logical “and”
operator.

Array F is assigned values so that F@s# 5 hs 2 hbackward~s!, where h0

5 0. Table II shows an example set of fs values, and the corresponding F@i#
values stored by Fenwick’s method.

Given the array F, calculating hs and incrementing the frequency count
of symbol s is achieved by the loop shown in Algorithm Fenwick Get
Frequency (Figure 4), which calculates hs using F, where 1 # s # n.

For example, h13 is calculated as F@13# 1 F@12# 1 F@8#, which by
definition of F is the telescoping sum ~h13 2 h12! 1 ~h12 2 h8! 1 ~h8 2
h0! 5 h13, as required. This is achieved in steps (1) and (2) of Algorithm
Fenwick Get Frequency (Figure 4). It is also straightforward to increment a
frequency count, using a process that updates the power-of-two aligned
entries to the right of F@s#, as shown by steps (3) and (4) in Algorithm
Fenwick Get Frequency (Figure 4). The value of variable increment can for
the moment be taken to be one, but, as is explained below, may be larger
than one if some further constraint—such as that the frequencies be
partially normalized in some range—is also to be maintained. Since ls 5
hs21, the same process can be used to calculate ls—without, of course, steps
(3) and (4). (In practice, the two values are calculated jointly, since much of
the work is common.) The decoding process, which must determine a
symbol s whose cumulative frequency range straddles an integer target, is
sketched in Algorithm Fenwick Get Symbol in Figure 5 (see Fenwick [1994]
for details). The important point to note is that all access and

2Slightly altered calculations are necessary for one’s-complement or sign-magnitude represen-
tations [Fenwick 1994].

Fig. 4. Algorithm Fenwick Get Frequency.

268 • A. Moffat et al.

ACM Transactions on Information Systems, Vol. 16, No. 3, July 1998.

increment operations in both encoder and decoder are carried out in O~log
n! time, using just a single array F.

The other operation required of the statistics module is scaling the
frequency counts by some fixed multiplier (usually 1/2, as discussed further
in Section 4). Fenwick [1994] gives a mechanism that requires O~n log n!
time for an alphabet of n symbols; in our implementation we include an
improved method that requires O~n! time per call.

3.3 Dynamic Alphabets

Both of Algorithms Fenwick Get Frequency and Fenwick Get Symbol
(Figures 4 and 5) make use of arrays rather than dynamic linked struc-
tures. If there is an a priori bound on alphabet size, the necessary space
can be reserved in advance. This is the case in the character compressor of
Algorithm Zero-Order Character-Based (Figure 2). However, with the adap-
tive word-based model it cannot be known in advance how many distinct
words will appear in the input. It is therefore necessary to resize the array
whenever the alphabet grows beyond its current size. This can conveniently
be accomplished by allocating a new block of memory and copying the
contents of the old block to it (e.g., using the C realloc() function). The
expansion should be by a multiplicative factor k, so that if the current size
is I, the next size is I9 5 kI, then I99 5 kI9, and so on. When implemented
this way the amortized copying cost is O~k/~k 2 1!! 5 O~1! per symbol
and the space used, including all previous deallocated arrays—which
because of fragmentation might not be reusable—is at most nk/~k 2 1! 1
nk. This latter expression is minimized at 4n when k 5 2. That is, a model
with a dynamic alphabet uses as much as four times as much space as an
equivalent static model. Using Fenwick’s data structure for a dynamic
alphabet of n symbols might therefore require as many as 4n words of
memory.

Use of k 5 2 is also helpful from a throughput perspective, since it
allows the decoder loop (Algorithm Fenwick Get Symbol, Figure 5) to avoid
the test “s 1 mid # n” in each loop iteration.

3.4 Sparse Alphabets

So far we have assumed that the symbols are numbered from one up to the
alphabet size. In some applications, however, they are scattered sparsely
throughout some much larger range. For example, in many contexts of the

Table II. Example of Fenwick’s Tree Structure

s 1 2 3 4 5 6 7 8 9 10 11 12 13 14

fs 1 1 1 4 3 5 2 3 6 5 4 1 1 9
F@s# 1 2 1 7 3 8 2 20 6 11 4 16 1 10
ls 5 O

i51
s21fi 0 1 2 3 7 10 15 17 20 26 31 35 36 37

hs 5 O
i51
s fi 1 2 3 7 10 15 17 20 26 31 35 36 37 46

Arithmetic Coding Revisited • 269

ACM Transactions on Information Systems, Vol. 16, No. 3, July 1998.

character-based PPM method [Cleary and Witten 1984] there will only be a
handful of possible “next” characters—for example, for ordinary English
text the only symbols appearing in the context of “qu” will be vowels, just
five values in a range of 256. In such applications it is better to use an
explicit search structure than to store the frequency counts in an array
indexed by symbol number. For the PPM method, where most contexts
have only a small alphabet, a linked list at each context is appropriate
[Moffat 1990a]. For larger (but still sparse) alphabets, more complex
structures are required. Possibilities include balanced search structures
such as AVL trees and Splay trees [Jones 1988], both of which also allow a
symbol to be located and ls and hs calculated in O~log n! time, or better.

4. PERFORMING THE ARITHMETIC

We turn now to the coding module. First, the process carried out by the
CACM implementation [Witten et al. 1987] is introduced and critiqued. We
then describe a reorganization that avoids most of those problems.

4.1 The CACM Coder

The basic coding step is performed by arithmetic_encode~l, h, t!, which
encodes a symbol implicitly assumed to have occurred h 2 l times out of a
total of t, and which is allocated the probability range @l/t, h/t!. The
internal state of the coder is given by the values of two variables L and R,
the current lower bound and range of the coding interval, and at each stage
the message so far can be represented by any value in @L, L 1 R!.3 The

3The description of the CACM coder in Witten et al. [1987] recorded the state of the coder
using variables L and H, with R 5 H 2 L 1 1 calculated explicitly at each coding step. Here
we prefer the L, R description, which has also been used by Jiang [1995] (see also Moffat
[1997]).

Fig. 5. Algorithm Fenwick Get Symbol.

270 • A. Moffat et al.

ACM Transactions on Information Systems, Vol. 16, No. 3, July 1998.

process followed by the CACM coder is illustrated (in anticipation of the
new procedure, in a somewhat altered form) in Figure 6 as Algorithm
CACM Coder. The values of L and R are represented by b-bit integers. L is
initially 0, and takes on values between 0 and 2b 2 2b22. R is initially 2b21,
and takes on values between 2b22 1 1 and 2b21, inclusive. We assume that
0 # l , h # t, and that t, which is the sum of the frequency counts of all
symbols available in the specified context, lies in the range t # 2 f, where f
is the number of bits used to store symbol frequencies, and may not exceed
a value dictated by the choice of b and the word size of the machine being
used.4 Finally, note that if both b and f are fixed in advance (that is, at
compilation time) many of the operations that involve them can be imple-
mented more efficiently than if they are true run-time variables.

The basic operation of the encoder, in steps (1)–(3), is to reduce the @L,
L 1 R! interval to the subinterval that is represented by the new symbol,

4Strictly speaking, Algorithm CACM Coder as first presented [Witten et al. 1987] requires t
, 2 f. If t # 2 f is desired in Algorithm CACM Coder then the range on R must be slightly
tightened to 2b22 # R , 2b21. This is not done here to allow consistency with the presentation
of the improvements described below.

Fig. 6. Algorithm CACM Coder.

Arithmetic Coding Revisited • 271

ACM Transactions on Information Systems, Vol. 16, No. 3, July 1998.

@l/t, h/t!, yielding a new interval @L 1 Rl/t, L 1 Rh/t!. The values of L
and R are updated to reflect this new interval. The interval must be
renormalized periodically to prevent it from becoming too small to be
represented in the b bits of precision available. This is accomplished by
step (4), which is considered in more detail in the next subsection along
with the constraints on R implied by the assertions in the encoder and
decoder.

Algorithm CACM Coder also illustrates the actions of the decoder, in
which V is the current window extending b bits into the compressed
bitstream. There are two functions, decode_target~t! and arithmetic_decode
~ls, hs, t!, corresponding to two basic steps that are required to decode a
symbol. The first determines a target value based upon V and the value of t
used in the corresponding encoding step. This is returned to the statistics
module, which is responsible for searching its data structure and determin-
ing which symbol s corresponds to that integer—that is, finding the symbol
s for which ls # target , hs. Then a call is made to arithmetic_decode
~ls, hs, t!, which carries out the bounds-scaling and bitshifting phases of
the operation, mimicking the effect of the encoder.

4.2 Renormalization

To minimize loss of compression effectiveness due to imprecise division of
code space, R should be kept as large as possible, and for correct operation,
it must certainly be at least as large as t, the total count of symbols. This is
done by maintaining R in the interval 2b22 , R # 2b21 prior to each
coding step,5 and making sure that t # 2 f, with f # b 2 2. That is, R must
be periodically renormalized and one or more bits output. The details of
this process, and of the corresponding renormalization of L, R, and V at
step (4) of arithmetic_decode(), are shown as Algorithm Encoder Renormal-
ization in Figure 7 and Algorithm Decoder Renomalization in Figure 8.

In Algorithm Encoder Renormalization, when L and L 1 R are both less
than or equal to 2b21, a zero-bit can be output and L and R adjusted
accordingly. Similarly, a one bit can be output when both are larger than or
equal to 2b21. When R # 2b22 and neither of these two cases applies, the
interval @L, L 1 R! must straddle 2b21. In this third case the variable bits
_outstanding is incremented, so that the next zero-bit or one-bit output will
be followed by one more opposite bit. Function bit_plus_follow() checks for
outstanding opposite bits each time it is called upon to output a bit of
known polarity. The correctness of this arrangement is justified by Witten
et al. [1987]; an alternative arrangement in which the effect of bits

5Again, the presentation here differs slightly from the CACM code [Witten et al. 1987] so as to
allow a succinct description of the major improvements proposed below. In the CACM
implementation R was bounded as 2b22 , R # 2b, and renormalization was done whenever
L 1 R # 2b21 or 2b21 # L or 2b22 # L # L 1 R # 2b 2 2b22.

272 • A. Moffat et al.

ACM Transactions on Information Systems, Vol. 16, No. 3, July 1998.

_outstanding is achieved by carry propagation in an output buffer is also
possible [Jiang 1995; Langdon 1984]. Schindler [1998] describes a further
method that allows byte-by-byte output from the renormalisation loop,
based upon the loop guard R , 2b29 that delays any action until eight bits
are determined. Bytes that are all ones must be buffered until a byte
containing a zero-bit is produced, the logical equivalent of bits
_outstanding. The elimination of bit-at-a-time processing makes execution

Fig. 7. Algorithm Encoder Renormalization.

Fig. 8. Algorithm Decoder Renomalization.

Arithmetic Coding Revisited • 273

ACM Transactions on Information Systems, Vol. 16, No. 3, July 1998.

faster, but has the drawback of restricting the range in which symbol
frequency counts must be maintained.

All of the output operations in Figure 7 result in R being doubled,
so after some number of output operations R will again be in range, ready
for the next coding step. Indeed, a symbol coded according to parameters
l, h, and t must automatically cause either 2log~~h 2 l!/t! bits or
2log~~h 2 l!/t! bits to be generated in the renormalization loop. Any
remaining information content of the symbol is recorded by the altered
coding state, reflected in the new values of L and R.

After each symbol is identified, the decoder must adjust its interval in
the same way. Furthermore, as each bit is processed by moving it out of the
high-order end of V, a new bit is shifted into the low-order end.

4.3 Drawbacks

There are several drawbacks to the CACM implementation. The first is
that the multiplication and division operations (marked as “times” and
“div” in Algorithm CACM Coder in Figure 6, to make them obvious) are
slow on some architectures compared to addition, subtraction, and shifting
operations. To arithmetic_encode a symbol requires two multiplications and
two divisions; and to decode_target plus arithmetic_decode requires three of
each.

The second problem concerns arithmetic overflow. Suppose that the
machine being used supports w-bit arithmetic. For example, on most
current workstations, w 5 32. Then, if overflow is to be avoided at steps
(1) and (3) of arithmetic_encode, at which “ R times l” and “ R times h” are
calculated, we must have 2w 2 1 $ 2b21t, which is satisfied when w $ b
2 1 1 f and t , 2 f. Moreover, if underflow and R 5 0 is not to occur after
step 3, R $ t is required, that is, 2b22 $ 2 f. In combination, these two
constraints can only be satisfied when w $ 2f 1 1. Hence, for w 5 32 the
largest value of f that can be supported is 15, and the sum of the frequency
counts in any given context must not exceed 32,767. For word-based
compression, and other models with a large alphabet, this is a severe
restriction indeed. The advent of 64-bit computers alleviates the problem in
some environments, and other work-arounds are also possible. Neverthe-
less, a more general solution is worthwhile.

Finally, there is some small risk of arithmetic overflow in the calculation
of bits_outstanding. Imagine a static model of three equiprobable symbols
A, B, and C; and suppose a file of a billion or so B’s is to be coded. Then bits
_outstanding will increase without any bits ever actually being emitted.
The risk of overflow is small—the probability of 232 bits all the same
polarity is, in an adaptive model, of the order of one in 2232

; nevertheless, it
is possible. There are three ways this problem can be handled. The first,
and most economical, is to monitor bits_outstanding in the encoder, and
should it become very large, write an error message and abort the program.

274 • A. Moffat et al.

ACM Transactions on Information Systems, Vol. 16, No. 3, July 1998.

If this is unpalatable—if the compression process must be robust to the
extent that even a one in a billion chance of failure cannot be tolerated—
then the decoder should be modified to be aware of the current value of bits
_outstanding, thereby allowing both encoder and decoder to synchronously
make use of a finish_encode and start_encode pair to flush outstanding bits
and reset the state of the coder whenever bits_outstanding approaches its
limiting value. This does, however, have the disadvantage of somewhat
slowing the decoder, and in our implementation we adopt the first ap-
proach. The third alternative is to suppose an a priori upper bound on the
length of any file that will be processed, and use extended precision
arithmetic for bits_outstanding to ensure that overflow is impossible.
Again, this problem is greatly alleviated by the use of 64-bit architectures.

4.4 An Improved Coder

Algorithm Improved Coder (Figure 9) describes our new approach to
arithmetic coding. The major change is in the order of calculation at steps
(1) and (2) of arithmetic_encode(). By doing the division first, one multipli-
cative operation is immediately saved. The trade-off is in compression
performance, since rounding the ratio r 5 R/t to an integer adversely
affects compression effectiveness. In step (3), in the case where the top
symbol is the one being encoded (h 5 t), care is taken to ensure that the
new top-point of the range is the same as it was before, that is, that L 1
R remains unchanged. This minimizes the loss by ensuring that the whole
range R is allocated to one symbol or another, but nevertheless some
inaccuracy arises. The amount of inaccuracy, and techniques that reduce it,
are discussed below in Section 5. Two multiplicative operations are saved
in the decoder, which is also described in Algorithm Improved Coder. Note
that the common value “r times l” need not be recalculated when h 5 t,
saving a further operation in both encoder and decoder when the remainder
of the range is being allocated to the last symbol in the alphabet. As we
shall see below, this is a nontrivial saving, since it is usually desirable to
place the most probable symbol at the top of the alphabet.

The rearrangement of the multiplicative operations also allows larger
frequency counts to be manipulated, and this a second important benefit of
the change. Now the only constraint is that t # R, that is, that f # b 2
2 and that t # 2 f. The revised coder can operate effectively with b 5 32
and f 5 30, and streams of up to 230 ' one billion symbols can be
processed before count scaling is required.

As an independent change, we also advocate a reorganization of the
decoder. In Algorithm Improved Coder (Figure 9) we make use of the
transformation D 5 V 2 L. This allows a substantially simpler decoder
renormalization loop (step (3) of function arithmetic_decode()), since in
Algorithm Decoder Renomalization (Figure 8) L and V undergo identical

Arithmetic Coding Revisited • 275

ACM Transactions on Information Systems, Vol. 16, No. 3, July 1998.

changes in each of the three cases of the renormalization loop. A simpler
loop, in turn, means faster execution, and this change alone improves
decoding speed by approximately 10%. Note that use of this transformation
is not linked in any way to the changes to the calculation of R at steps (1)
and (2) of arithmetic_encode().

Finally, we reiterate the changes already assumed in the presentation of
Algorithm CACM Coder: the use of L and R to describe the coder’s state
rather than L and H; and the use of the overriding guard R # 2b22 on the
renormalization loop.

Fig. 9. Algorithm Improved Coder.

276 • A. Moffat et al.

ACM Transactions on Information Systems, Vol. 16, No. 3, July 1998.

4.5 Initialization and Termination

We now consider the initialization and termination routines needed to
support the coding functions of Algorithm Improved Coder. The initializa-
tion of R differs slightly from the CACM code, which had the effect of
initializing R to 2b. Here we use 2b21 instead, to ensure that the asserted
preconditions of arithmetic_encode() and arithmetic_decode() are always
correct. The change means that the first output bit from the coder will
always be a zero, introducing a small redundancy into the output stream.
This extra output bit can either be filtered out by the encoder and assumed
by the decoder, or left in the bitstream and inspected by the decoder as a
one-bit validity check. Our source code implementation allows either of
these alternatives. Use will be made of the assertions governing R in
Section 6.

Termination involves the encoder calculating and transmitting suffi-
ciently many bits that the final interval can be identified by the decoder
unambiguously, irrespective of what other bits follow on from there. For
example, the next bit in the input stream might represent—completely
uncompressed—whether there is another compressed stream to be decoded,
or might be another coded message started from a new initial model. There
are several ways in which this termination can be done. In our implemen-
tation we offer two alternatives.

The first alternative is to simply emit the b bits that describe the current
value of L. While less than optimal in terms of compression, this approach
means that there is no need to push any bits in the window (variable D)
back to the input bitstream if another message (compressed or uncom-
pressed) follows in the immediately next bit of the input file. This alterna-
tive also allows the D 5 V 2 L transformation to be fully exploited, since
there is never any need for the decoder to maintain a value for V or L.

It does, however, cause as many as b 2 1 unnecessary bits to be emitted.
In a “frugal bits” environment in which decoding speed is less important
than economy of transmission, a minimal number of further output bits can
be generated so that, regardless of what bits are allowed to follow these
final bits, the message will be decoded correctly. This is achieved with a
loop that first tests the smallest one-bit-of-precision number greater than
or equal to L, then the smallest two-bits-of-precision number greater than
or equal to L, and so on. When a value is found for which any possible
successor bits still yield a value less than L 1 R, the loop exits, and those
bits are emitted. This is the second alternative provided in our implemen-
tation; and for details the reader is referred to the source code. In this case
the need for both L and R to be known means that the decoder must
maintain a value for either L or V during the renormalization process,
partially negating the speed advantage of the D 5 V 2 L transformation.

With the constraints on L and R enforced by the various loop guards this
second approach requires at least one (when either L 5 0 or L 5 2b21 and

Arithmetic Coding Revisited • 277

ACM Transactions on Information Systems, Vol. 16, No. 3, July 1998.

R 5 2b21) and at most three final bits to be emitted. Readers very familiar
with the CACM implementation may recall that for it, two disambiguating
bits were always sufficient: the difference is caused by the altered renor-
malization loop guards. The extra third bit sometimes output by the new
implementation is one that would already have been output in the original
implementation, and the net effect is identical.

These functions are described in Figure 10 as Algorithm Support Rou-
tines. Note that the CACM interface [Witten et al. 1987] has been extended
slightly by including function finish_decode(); when function finish
_encode() emits L (which is the case described in Algorithm Support
Routines) finish_decode() does nothing. On the other hand, in a “frugal
bits” environment finish_decode() must reconstitute values for L and V,
repeat the calculations performed in finish_encode() as to how many
termination bits should be emitted, and then push the correct number of
residual bits from V back to the front of the input bitstream so that they
are available to whatever reading process is expecting to find them there.

4.6 Partial Normalization of Frequency Counts

In Section 6, we will describe how the new organization of the coding
operations allows multiplicative operations to be replaced by shifts and
adds. To support this development, it is necessary to maintain the fre-

Fig. 10. Algorithm Support Routines.

278 • A. Moffat et al.

ACM Transactions on Information Systems, Vol. 16, No. 3, July 1998.

quency counts in partially normalized form, so that 2 f21 , t # 2 f.6 In an
adaptive coder this is achieved by requiring the statistics module to scale
the counts for context C by a factor of 1/2 whenever tC . 2 f. To ensure that
the statistics accumulation remains fair, the increment used during fre-
quency count updates should also be scaled, but bounded below by one.
Algorithm Count Scaling (Figure 11) illustrates the process of coding a
symbol and then incrementing its frequency count, including scaling to
maintain 2 f21 , t # 2 f.

The t # 2 f bound on the frequency counts means that the inaccuracy of
the rounding process is greatest when f is large relative to b, and when f is
small the arithmetic is more precise. For example, when f 5 b 2 2 then r
must be either 1, 2, or 3; and, in general, 2b2f22 # r , 2b2f.

It is also possible to constrain t even more tightly by maintaining 2 f21

, t # 2 f11/3. When t exceeds the upper limit each frequency count is
multiplied by 3/4, which can be achieved with two shifts and an addition.
The analysis of the next two sections demonstrates that the smaller the
value of t, the lower the rounding inefficiency; a more constrained scaling
process thus reduces the inefficiency for a given lower limit 2 f21 on the
frequencies that sum to t. The trade-off is in increased execution time, as
scaling will take place approximately three times more often.

6Partial normalization is not necessary if multiplications and divisions are done the usual
way. However, by always performing these normalizations, one preserves the option of
ultimately using a shift/add decoder, even if the encoding was done using normal multiplies
and divides.

Fig. 11. Algorithm Count Scaling.

Arithmetic Coding Revisited • 279

ACM Transactions on Information Systems, Vol. 16, No. 3, July 1998.

5. ANALYSIS

In this section we bound the loss of compression effectiveness caused by the
use of approximate symbol probabilities.

5.1 Worst-Case Analysis

Consider the compression loss caused by the use of approximate arithmetic.
Call the last symbol in the alphabet sn, and its probability pn. The effect of
the rounding in arithmetic_encode() in Algorithm Improved Coder (Figure
9) is to allocate too much code space to sn at the expense of the remaining
symbols. In the worst case, instead of the complete range R, only a fraction
r/~r 1 1! of it is apportioned fairly between the symbols according to their
probabilities. Figure 12 illustrates the situation.

The excess, which can be as much as 1/~r 1 1!, is allocated to sn over
and above its rightful share, giving it a total of as much as pnr/~r 1 1! 1
1/~r 1 1!. The consequent increase in per-symbol code length can be
calculated by considering the two events sn and not sn, because the symbols
s1, s2, · · ·, sn21 receive the correct proportion of code space within that
allocated to not sn. This excess E is as follows (all logarithms are binary):

E 5 ~pn log pn 1 ~1 2 pn! log ~1 2 pn!!

2 Spnlog
1 1 pnr

r 1 1
1 ~1 2 pn!log

r 2 pnr

r 1 1 D
5 pnlog

pn~r 1 1!

1 1 pnr
1 ~1 2 pn!log

r 1 1

r
.

The error bound is proportionately at its greatest when r* 5 2b2f22, which
is the smallest value of R/t permitted by the constraints on R and t,
because at this point the ratio ~r 1 1!/r is maximized. As pn tends to one,

Fig. 12. Approximate calculation and truncation excess.

280 • A. Moffat et al.

ACM Transactions on Information Systems, Vol. 16, No. 3, July 1998.

E tends to zero, and as pn tends to zero, E tends to E* 5 log@~r* 1 1!/r*#
' log e/ 2b2f22. Figure 13 plots E as a function of pn for various values of
b 2 f; each of the curves approaches the corresponding value of E* at the
left-hand side of the graph.

The analysis shows that, for any given symbol probability distribution,
the loss of compression effectiveness can be minimized by making pn the
largest probability in the distribution; that is, by arranging the symbol
ordering so that it is the most probable symbol (MPS) that is allocated the
extra probability created during the rounding process. If sn is the MPS, the
entropy of the alphabet must be at least 21/pnpn log pn 2 ~1 2
1/pnpn! log ~1 2 1/pnpn!, a lower bound achieved only when as many
as possible of the other symbols also have this probability.7 Figure 14
shows the upper bound on the relative inefficiency obtained using this
lower bound on the entropy. We see, for example, that for b 2 f $ 6 the
relative inefficiency is always less than 1%.

5.2 Average-Case Analysis

These compression degradations have been calculated assuming only that
the source is true to the probabilities being used. The assumption that R
always takes on its minimal value is unduly pessimistic, however, as R will
in practice vary in a random manner within its permitted range.

To exploit this variation it is tempting to assume that R is randomly
distributed uniformly between its lower and upper bounding values—that
is, that each value z in the range 2b22 , z # 2b21 occurs with probability
22~b22!. Unfortunately, the assumption of uniformity is too optimistic—the
correct probability density function is proportional to 1/R, with the proba-
bility Pr~R! of R being approximately ~log e!/R. (Recall that all logs in this
article are to base 2.)

7It is assumed here that x log2 x 5 0 when x 5 0.

Fig. 13. Upper bound on excess bits per symbol, as a function of pn and b 2 f.

Arithmetic Coding Revisited • 281

ACM Transactions on Information Systems, Vol. 16, No. 3, July 1998.

To see why this is so, consider the quantity I 5 2log~R/ 2b21!, which is
the amount of information from previously encoded symbols that has not
yet been transmitted to the decoder. At the end of an encoding step, I will
be in the interval [0,1). When a symbol with probability pi is encoded, I
increases by approximately 2log pi. When a bit is transmitted, I decreases
by 1. If symbol probabilities vary randomly to at least some small degree,
the value of I at any given time will also be random.

Unless symbol probabilities are highly restricted (for example, all pi 5

1/ 2, always), I will vary over its full range and can be analyzed as a
continuous random variable (even though it of course discrete, given finite
precision arithmetic). In particular, I will usually have a distribution that
is uniform over [0,1). This distribution is invariant with respect to the
operation of encoding a symbol with any given probability, pi, and hence
also with respect to the encoding of a symbol with pi selected according to
any distribution. When many pi are used, the uniform distribution will
generally be the only one that is invariant, and will therefore be the
equilibrium distribution reached after many encoding operations.

Fig. 14. Upper bound on relative inefficiency, percentage of entropy as a function of pn and b
2 f, assuming sn is the most probable symbol.

Fig. 15. Distribution of R/10,000,000, accumulated over 465,349 coding steps with b 5 32.

282 • A. Moffat et al.

ACM Transactions on Information Systems, Vol. 16, No. 3, July 1998.

This uniform distribution for I, with density Pr~I! 5 1, can be trans-
formed to find the distribution for R 5 2b212I 5 e ~b212I!/log e, using the
general rule for transforming densities:

Pr~R! 5
Pr~I!

?dR / dI?
5

log e

e~b212I!/log e
5

log e

R

The probabilities for the actual discrete distribution are the same as the
above density, since the interval between discrete values is one.

Figure 15 shows the measured distribution of R over a compression run
involving 465,349 calls to arithmetic_encode() with b 5 32 and thus
1,073,741,824 , R # 2,147,483,648 . The wide gray line is the behavior
that would be expected if the probability of R taking on any particular
value was proportional to 1/R; the crisp black line is the observed fre-
quency of R/107, that is, R when quantized into buckets of 10 million. As
can be seen, the distribution is certainly not uniform, and the 1/R curve
fits the observed distribution very well. Similar results were observed for
other input files and other models.

Suppose then that R takes on values in the range @2b22, 2b21! with
probability density proportional to 1/R. If t 5 2 f, then after the division
takes place the “true” quotient x 5 R / t is similarly random in @2b2f22,
2b2f21!, again with a 1/R probability distribution. The true x is then
approximated in the coder by r 5 x. Hence, the maximum expected

coding excess, E# *, which occurs as pn tends to zero, is given by

E# * 5
1

K
z O

R52b22

2b2121 1

R
z log

R/2f

R/2f
,

where

K 5 O
R52b22

2b2121 1

R
'

1

log e
.

When b 5 20 and f 5 18 this evaluates to 0.500; when b 5 20 and f 5
17, it is 0.257; and, in general, it is about 40% of the pessimal values
plotted in Figures 13 and 14. Table III lists the worst-case and average-
case error bounds for various values of b 2 f when b 5 20. Note that the
exact value of b has very little effect on these values unless b is small.

If t may also be assumed to be random in its range then the expected
inefficiency is further reduced, since the quotient R/t becomes proportion-
ately larger. Note, however, that t is an attribute of the model rather than
the coder and so no particular distribution may in general be assumed. All
of the values in Table III assume a pessimal value of t 5 2 f.

Arithmetic Coding Revisited • 283

ACM Transactions on Information Systems, Vol. 16, No. 3, July 1998.

5.3 Practical Use

From Figure 13 it can be seen that if minimization of coding inefficiency is
important, the MPS should be identified in the statistics module, and
maintained at the top of the alphabet. Our implementation of Fenwick’s
structure does just that. The alternative is to simply use a large value of
b 2 f, minimizing the compression loss by using better approximations.

Table III also allows estimation of the relative effectiveness irrespective
of pn, provided only that the entropy of the distribution being coded can be
approximated. For example, the zero-order entropy of a word frequency
distribution usually exceeds 10 bits per symbol and so even if pn is the
smallest probability, the average error is less than 5% for b 2 f 5 2 and
about 0.3% when b 2 f 5 6. Similarly, the entropy of the nonword distri-
bution is usually greater than 2 bits per symbol, and so with b 2 f 5 6 the
combined inefficiency when coding the word-based model described earlier
in this article is not more than ~0.03 1 0.03!/~10 1 2! ' 0.5%.

Finally, this reorganization of the coding operations permits most of the
multiplications and divisions to be performed with a small number of shifts
and adds, provided the symbol frequencies are maintained partially nor-
malized. On some architectures the use of shift/add calculation will provide
substantial additional improvement in compression throughput. Methods
for doing these calculations are discussed in Section 6.

5.4 Related Work

Other multisymbol approximate arithmetic coding approaches have been
proposed in the literature. Rissanen and Mohiuddin [1989] describe and
analyze a method not dissimilar to the one described here in the special
case when b 2 f 5 2, but with r taken to be either 1 or 2, which makes the
decoder straightforward. They stipulate a slightly different normalization
regime for R, and also suppose that the symbol frequencies are shifted at
each modeling step rather than maintained partially normalized as is the
case here. Points in common (compared to the case when b 2 f 5 2) are
the use of an approximation to r, and the observation that the coding error
is minimized if the MPS is allocated the excess probability caused by the
rounding process. The distinguishing feature of our proposal is the ability

Table III. Limiting Worst-Case and Average-Case Errors, Bits per Symbol, as pn 3 0

Worst-Case Average-Case
Error (bits per symbol) Error (bits per symbol)

b 2 f E* E# *

2 1.000 0.500
4 0.322 0.130
6 0.087 0.033
8 0.022 0.008

10 0.006 0.002

284 • A. Moffat et al.

ACM Transactions on Information Systems, Vol. 16, No. 3, July 1998.

to vary b 2 f, allowing a smooth tradeoff between time requirements (or
hardware complexity) and compression effectiveness. Chevion et al. [1991]
(see also Feygin et al. [1994]) analyze another method; they approximate R
by a value R9 5 2b22 1 2b222L, which means that the multiplications can
be performed using two shift/add operations. This method achieves good
compression effectiveness, but as described requires fully normalized prob-
abilities, possibly making it less suitable for general purpose adaptive
compression.

One important point worth noting is that this previous work has as-
sumed for the purpose of average case analysis that R is distributed
uniformly in its range. As demonstrated above, this is not correct, so the
average case error bounds of these papers require revision.

6. REMOVING MULTIPLICATIVE OPERATIONS

In this section we further refine the description of the improved method,
showing how it can be implemented with a small number of additive
operations, and giving experimental results showing it to be fast in prac-
tice.

6.1 Shift-Add Implementation

The description of Algorithm Improved Coder allows a further improve-
ment—the use of additive and logical (shift and mask) operations to
calculate the results of the remaining multiplications and divisions. Since
the quotient r has at most b 2 f bits of precision, when b 2 f is small it
may be faster to use shift/add operations to calculate l 3 r and h 3 r, and
shift/subtract to effect “div” operations, than it is to use the hardware
multiply and divide operations, which provide 32 or 64 bits of precision and
are often implemented in firmware using shift/add operations anyway. The
loop in Algorithm Shift/Add Coder (Figure 16), for example, achieves the
same adjustment of L and R as do steps (1), (2), and (3) of Algorithm
Improved Coder.

Using this approach, the three multiplicative operations in the encoder
can be replaced by O~b 2 f! additive and logical operations.

A similar rearrangement can be effected in arithmetic_decode(). If it is
assumed that r is already known, then l 3 r and h 3 r can be calculated
in the same manner as in the encoder. There is, however, a problem with
decode_target(). Since the target value that is calculated once r is deter-
mined has f bits of precision, it would appear that f shift/subtract loop
iterations are required, making O~b! iterations in total. In fact, this need
for an f-bit target is an artifact of the modular approach espoused here, and
can be reduced using the following mechanism.

Suppose that r is calculated by decode_target() in O~b 2 f! shift/subtract
iterations, but that no further computation is performed. Let target be the
target value that would be computed were the computation completed. To
determine the symbol number that corresponds to target, the statistics

Arithmetic Coding Revisited • 285

ACM Transactions on Information Systems, Vol. 16, No. 3, July 1998.

module makes use of a further function less_than_target(value) that re-
turns true if value , target, and false otherwise. All that is necessary now
is to write less_than_target(value) in such a way that it incrementally
calculates sufficiently many more significant bits of target that the outcome
of the comparison can be known. That is, less_than_target(value) deter-
mines only sufficiently many bits of target for it to return the correct result
of the comparison. The statistics module can then branch to the appropri-
ate alternative, and will make further calls to less_than_target() until a
symbol number is known. Once the symbol number is known no further bits
of target are required.

Clearly, all f bits of target might in some situations need to be evaluated.
But on average, fewer bits suffice. Suppose that the symbol in question has
probability pi. Then the bounding cumulative probabilities of symbol i will
differ in magnitude by tpi, which means they will differ in about log t 1
log pi of their low order bits. Since target is essentially a uniformly random
value between these two bounds, it can in turn be expected to differ from
both bounds on average by log t 1 log pi 2 1 bits. If the calculation of bits
of target from most-significant to least-significant is halted as soon as
target differs from both bounds, then on average log t 2 ~log t 1 log pi

2 1! bits must be calculated, that is, 1 1 log~1/pi!. In most cases the
constant overhead of calling a function per comparison outweighs any
speed advantage, and we do not include this facility in our package. An
alternative implementation demonstrating incremental calculation of tar-
get, coupled with the original linear array statistics data structure [Witten

Fig. 16. Algorithm Shift/Add Coder.

286 • A. Moffat et al.

ACM Transactions on Information Systems, Vol. 16, No. 3, July 1998.

et al. 1987], is available at ftp://ftp.cs.toronto.edu in the directory
/pub/radford , file lowp _ac.shar .

6.2 Performance

Table IV shows throughput rates for both “multiply” and “shift” versions of
the improved method, for various values of b and f, using an adaptive
zero-order character-based model of the form described in Section 2 (as was
also used for the experiments of Witten et al. [1987]).8 The “shift/add” coder
calculates a full f-bit target in a single call to decode_target(). Also listed is
the compression ratio obtained by each version. The speed and compression
of Algorithm CACM Coder for the same experiment is listed in the first row
of the table, using the source code reproduced in the CACM article. In order
to gauge the extent to which the speed improvements resulted from the
data structure changes (from a sorted list to Fenwick’s tree) we also
coupled Algorithm Improved Coder to a sorted list structure, and these
results are shown in the second line of the table.

The test file was 20MB of text taken from the Wall Street Journal (part of
the TREC collection [Harman 1995]). This file has 92 distinct characters, a
zero-order character entropy of 4.88 bits per characters, and has an MPS
probability of 16% (for the space character). For Algorithm Improved Coder
and Algorithm Shift/Add Coder, the data structure manipulations were
such that the MPS was allocated all of the truncation excess, and so the
compression results can be compared directly with those predicted by Table
III. All experiments were performed on an 80 MIP Sun Sparc 10 Model 512,
using a compiler that generated software function calls for integer multipli-
cation and division operations.

Comparing the first two lines of Table IV, it is clear that the reduced
number of arithmetic operations brings the expected performance gain.
Comparing the second and third lines of the table, it is equally clear that
for this small alphabet the tree-based statistics structures is no faster than
the sorted list structure used in the CACM implementation. This is
plausible, since for this alphabet the tree has eight levels, and Witten et al.
[1987] reported that the sorted-list frequency structure averaged about 10
loop iterations when processing English text. The tree implementation is

8This is the program char distributed as part of our software package.

Table IV. Multiplicative- and Shift-Based Approximate Coding

Statistics Compression Encoding Decoding
Method Structure b f (bits/char) (MB/min.) (MB/min.)

CACM Coder list 32 14 4.89 4.83 3.93
Improved Coder list 32 14 4.89 6.64 5.26
Improved Coder tree 32 14 4.89 6.52 5.26
Shift/Add Coder tree 32 14 4.89 7.89 6.75
Shift/Add Coder tree 20 14 4.89 9.85 8.32
Shift/Add Coder tree 16 14 5.12 10.59 8.90

Arithmetic Coding Revisited • 287

ACM Transactions on Information Systems, Vol. 16, No. 3, July 1998.

measurably better than the list structure for files that contain a less skew
character distribution, such as object or data files.

The difference between the third and fourth lines shows the speed
advantage obtainable with the shift/add implementation. Note that for this
particular architecture the advantage accrues even when b 2 f is rela-
tively large. Finally, the fifth and sixth lines show how further speed
improvements can be obtained if compression effectiveness is sacrificed.
With b 2 f 5 6 the compression loss is negligible, and even with b 2 f 5
2 the loss is small—0.23 bits per character, well within the 0.50 average
case bound reported above in Table III. (The difference arises because it
was assumed in that analysis that t is always 2 f, whereas in the experi-
ments it varies within the range 2 f21 , t # 2 f.) Overall, comparing the
first and the fifth rows of the table provides the justification for the earlier
claim that both encoding and decoding speed are doubled—with no discern-
ible loss of compression effectiveness—by the techniques advocated in this
article.

As expected, the word-based compressor of Algorithm Zero-Order Word-
Based (Figure 3) yields much better compression. With a 5MB memory
limit in which the words and nonwords must be stored, and a shift/add
coder using b 5 32 and f 5 20, it attains a compression ratio for the same
20MB test file of 2.20 bits per character, encodes at 10.8 MB/min., and
decodes at 10.0 MB/min. Note that this includes the cost of learning the
words and nonwords; there is no external vocabulary used and only a single
pass is made over the file. As a reference point we used the same test
harness on the well-known Gzip utility,9 which uses a LZ77 [Ziv and
Lempel 1977] sliding-window model and encodes pointers and literals using
a variant of Huffman coding. Gzip compresses at 10.9 MB/min., decom-
presses at 92.3 MB/min., and attains a compression rate of 2.91 bits per
character.

6.3 Hardware Considerations

These results are, of course, for one particular software implementation
and one particular machine. Different relativities will arise if different
hardware with different characteristics is used, or if a full hardware
implementation is undertaken. Indeed, in many ways the Sparc architec-
ture is the ideal machine for us to have carried out this work, since there
are no integer multiplicative operations provided at the hardware level—all
such operations are implemented at the machine-language level by a
sequences of shift and add operations. Experimentally it appears that
integer multiply operations take about 10–15 times longer than integer
adds, and that integer divides take as much as 50 times longer, so it is not
at all surprising that the shift/add implementation is faster.

9Gailly, J. 1993. Gzip program and documentation. The source code is available from
ftp://prep.ai.mit.edu/pub/gnu/gzip-*.tar .

288 • A. Moffat et al.

ACM Transactions on Information Systems, Vol. 16, No. 3, July 1998.

On the other hand, some architectures offer integer multiply and divide
instructions in hardware, and execute them in the same time as other
operations. For example, on an Intel Pentium Pro (200MHz), which pro-
vides single-cycle integer multiply and divide operations, encoding using
Algorithm Shift/Add Coder is still slightly faster than encoding using
Algorithm Improved Coder (25.5 MB/min. compared with 23.9 MB/min.,
both with b 5 32 and f 5 27, and with the CACM implementation [Witten
et al. 1987] operating at 19.6 MB/min., all on the same 20MB test file), but
decoding is slower (15.2 MB/min. for Algorithm Shift/Add Coder versus
20.7 MB/min. for Algorithm Improved Coder and 20.8 MB/min. for Algo-
rithm CACM Coder). This difference in relative behavior between encoding
and decoding is a result of the f-bit division in function decode_target(),
which on the Pentium Pro is expensive in the shift/add version compared
with single-cycle division used in Algorithms CACM Coder amd Improved
Coder.10 Hence, on machines such as the Pentium Pro, the best combina-
tion is to reduce the range using the shift/add approach in both encoder and
decoder, but for decode_target() to make use of a full division. None of the
other benefits of using the low-precision approach are compromised by such
a combination.

7. BINARY ALPHABETS

A variety of compression applications deal with a binary alphabet rather
than the multisymbol alphabets considered in the previous section. For
example, both the context-based bi-level image compression methods
[Langdon and Rissanen 1981] upon which the JBIG standard is based and
the Dynamic Markov Compression method of Cormack and Horspool [1987]
rely for their success upon the use of binary arithmetic coding. Binary
coding can certainly be handled by the routines described in Table I, but
specially tailored routines are more efficient. Table V shows the binary
arithmetic coding routines that we support.

Binary coding allows a number of the components of a coder for a
multisymbol alphabet to be eliminated, which is why there are efficiency
gains from treating it specially. There is no need for the statistics data
structure, since cumulative frequency counts are trivially available. It is

10Similar results were observed on the Sun hardware when explicit use was made of the
in-built SuperSparc hardware multiplication and division operations. These fast operations
are accessed via a compiler option that was discovered only after the bulk of the experimen-
tation had been completed.

Table V. Module Interface Functions for Binary Arithmetic Coding

Module Encoder Decoder

Statistics C 4 create_binary_context() C 4 create_binary_context()
binary_encode~C, s! s 4 binary_decode~C!

Coder binary_arithmetic_encode~c0, c1, bit! bit 4 binary_arithmetic_decode~c0, c1!

Arithmetic Coding Revisited • 289

ACM Transactions on Information Systems, Vol. 16, No. 3, July 1998.

also straightforward to arrange for the MPS (which for a binary coder must
have probability of at least 0.5) to be allocated the excess probability
caused by the truncation during the division. Finally, one multiplicative
operation can be eliminated in the encoder when the less probable symbol
(LPS) is transmitted, and one multiplicative operation avoided in the
decoder for the MPS and two for the LPS. Algorithm Binary Coder (Figure
17) details the operation of a binary arithmetic encoder and decoder; c0 and
c1 are assumed to be the frequencies of symbols zero and one respectively,
and bit is the bit to be actually transmitted. Note that the MPS is allocated
the truncation excess, but is placed at the lower end of the range R; this is
to minimize the number of additive operations incurred when the MPS
occurs.

To validate the procedures described in Algorithm Binary Coder, we
implemented a simple bit-based compression model that predicts the next

Fig. 17. Algorithm Binary Coder.

290 • A. Moffat et al.

ACM Transactions on Information Systems, Vol. 16, No. 3, July 1998.

bit in an input stream based upon a context established by the k immedi-
ately preceding bits.11 For example, with k 5 16 each bit is predicted in a
context of (roughly speaking) two eight-bit characters. The results of
executing this model with the two coding methods—Algorithm Improved
Coder and Algorithm Binary Coder—and k 5 16 are shown in Table VI.
The same test file was used as for Table IV, so the values are directly
comparable. It should, however, be noted that approximately nine times as
many arithmetic coding steps are performed in the bit-based model (one for
each bit of each byte, plus a ninth to indicate whether there is a subsequent
byte to be coded) than are required using the character-based model used
for Table IV, so it is not surprising that throughput suffers.

Note that the shift/add binary arithmetic decoder does not suffer the
problems described above for the multialphabet decoder, and there is no
requirement for any f-bit values to be calculated. In both encoder and
decoder all multiplicative operations can be evaluated to b 2 f bits of
precision.

The Q-Coder [Pennebaker et al. 1988] is the benchmark against which all
binary arithmetic coders must be judged. The Q-Coder combines probability
estimation and renormalization in a particularly elegant manner, and
implements all operations as table lookups. The last row of Table VI shows
the effect of coupling a Q-Coder (using the implementation of Kuhn [1996])
with the bit-based model with k 5 16. This combination attains better
throughput for both encoding and decoding, and compression midway
between the results obtained with b 2 f 5 2 and b 2 f 5 6. Compared to
the Q-Coder, the binary coding method described here does, however, have
the advantage of allowing binary symbols to be interleaved in a compres-
sion stream containing multialphabet symbols. For example, some imple-
mentations of the PPM compression scheme [Cleary and Witten 1984]
interleave binary novel/not-novel escape symbols with actual character
predictions.

8. CONCLUSION

We have detailed from top to bottom the various components required in
any adaptive compression scheme that uses arithmetic coding. We have

11This is the program bits distributed as part of our software package.

Table VI. Binary Arithmetic Coding

Compression Encoding Decoding
Method b f (bits/char) (MB/min.) (MB/min.)

Improved Coder 20 14 3.22 1.22 0.93
Shift/Add Coder 20 14 3.22 1.49 1.28
Binary Coder, mult/div 20 14 3.22 1.84 1.90
Binary Coder, shift/add 20 14 3.22 3.19 3.36
Binary Coder, shift/add 16 14 3.35 3.71 3.72
Q-Coder — — 3.28 5.37 4.50

Arithmetic Coding Revisited • 291

ACM Transactions on Information Systems, Vol. 16, No. 3, July 1998.

also described an improved implementation of arithmetic coding that,
compared to previous approaches, uses fewer multiplicative operations and
allows a much wider range of symbol probabilities. We have validated our
claims with a full software implementation, and made that implementation
available to others through the Internet. That implementation includes a
word-based model that obtains good compression at reasonable speed; a
simple character-based model that obtains only moderate compression,
whose primary purpose is to serve as a test-harness for our comparative
compression and speed results; and a bit-based model that is slow, but
illustrates the key ideas of binary arithmetic coding and obtains compres-
sion midway between the word and character-based models. We hope that
subsequent researchers will make use of these various software compo-
nents when describing their own techniques for coding, and that it will be
possible for results from disparate papers to be compared.

Finally, we conclude with a caveat: despite our advocacy of arithmetic
coding there are also many situations in which it should not be used. For
binary alphabets, if there is only one state and if the symbols are indepen-
dent and can be aggregated into runs, then Golomb or other similar codes
should be used [Gallagher and Van Voorhis 1975; Golomb 1966]. For
multisymbol alphabets in which the MPS is relatively infrequent, the error
bounds on minimum-redundancy (Huffman) coding are such that the
compression loss compared to arithmetic coding is very small [Capocelli
and De Santos 1991; Manstetten 1992]. If static or semistatic coding (that
is, with fixed probabilities) is to be used with such an alphabet, a Huffman
coder will operate several times faster than the best arithmetic coding
implementations, using very little memory [Bookstein and Klein 1993;
Moffat and Turpin 1997; Moffat et al. 1994].

On the other hand, adaptive minimum-redundancy (Huffman) coding is
expensive in both time and memory space, and is handsomely outperformed
by adaptive arithmetic coding even ignoring the difference in compression
effectiveness. Fenwick’s structure requires just n words of memory to
manage an n-symbol alphabet, whereas the various implementations of
dynamic Huffman coding [Cormack and Horspool 1984; Gallager 1978;
Knuth 1985; Vitter 1987] consume more than 10 times as much memory
[Moffat et al. 1994]. They also operate at between a half and a quarter of
the speed of the adaptive arithmetic coder described here. Indeed, in many
applications, the better compression of the arithmetic coder is almost
incidental. It is this fact that inspires our enthusiasm and the continued
investigation reported in this article.

ACKNOWLEDGMENTS

John Carpinelli, Wayne Salamonsen, and Lang Stuiver carried out the bulk
of the programming work described here, and we thank them for their
efforts. We are also grateful to Mahesh Naik and Michael Schindler, who
provided extensive comments on our work. Finally we thank the referees
for their perceptive and helpful comments.

292 • A. Moffat et al.

ACM Transactions on Information Systems, Vol. 16, No. 3, July 1998.

REFERENCES

BELL, T. C., CLEARY, J. G., AND WITTEN, I. H. 1990. Text Compression. Prentice-Hall, Inc.,
Upper Saddle River, NJ.

BENTLEY, J. L., SLEATOR, D. D., TARJAN, R. E., AND WEI, V. K. 1986. A locally adaptive data
compression scheme. Commun. ACM 29, 4 (Apr.), 320–330.

BOOKSTEIN, A. AND KLEIN, S. T. 1993. Is Huffman coding dead?. Computing 50, 4, 279–296.
BURROWS, W. AND WHEELER, D. J. 1994. A block-sorting lossless data compression algorithm.

Tech. Rep. 124. Digital Equipment Corp., Maynard, MA.
CAPOCELLI, R. M. AND DE SANTIS, A. 1991. New bounds on the redundancy of Huffman

codes. IEEE Trans. Inf. Theor. IT-37, 1095–1104.
CHEVION, D., KARNIN, E. D., AND WALACH, E. 1991. High efficiency, multiplication free

approximation of arithmetic coding. In Proceedings of the 1991 IEEE Data Compression
Conference, J. A. Storer and J. Reif, Eds. IEEE Computer Society Press, Los Alamitos, CA,
43–52.

CLEARY, J. G. AND WITTEN, I. H. 1984. Data compression using adaptive coding and partial
string matching. IEEE Trans. Commun. COM-32, 396–402.

CORMACK, G. V. AND HORSPOOL, R N. 1984. Algorithms for adaptive Huffman codes. Inf.
Process. Lett. 18, 3 (Mar.), 159–165.

CORMACK, G. V. AND HORSPOOL, R. N. 1987. Data compression using dynamic Markov
modelling. Comput. J. 30, 6 (Dec.), 541–550.

CORMEN, T. H., LEISERSON, C. E., AND RIVEST, R. L. 1990. Introduction to Algorithms. MIT
Press, Cambridge, MA.

FENWICK, P. M. 1994. A new data structure for cumulative frequency tables. Softw. Pract.
Exper. 24, 3 (Mar.), 327–336.

FEYGIN, G., GULAK, P. G., AND CHOW, P. 1994. Minimizing excess code length and VLSI
complexity in the multiplication free approximation of arithmetic coding. Inf. Process.
Manage. 30, 6, 805–816.

GALLAGER, R. G. 1978. Variations on a theme by Huffman. IEEE Trans. Inf. Theor. IT-24, 6
(Nov.), 668–674.

GALLAGER, R. G. AND VAN VOORHIS, D. C. 1975. Optimal source codes for geometrically
distributed integer alphabets. IEEE Trans. Inf. Theor. IT-21, 2 (Mar.), 228–230.

GOLOMB, S. W. 1966. Run-length encodings. IEEE Trans. Inf. Theor. IT-12, 3 (July),
399–401.

HAMAKER, D. 1988. Compress and compact discussed further. Commun. ACM 31, 9 (Sept.),
1139–1140.

HARMAN, D. K. 1995. Overview of the second text retrieval conference (TREC-2). Inf. Process.
Manage. 31, 3 (May– June), 271–289.

HORSPOOL, R. N. AND CORMACK, G. V. 1992. Constructing word-based text compression
algorithms. In Proceedings of the 1992 IEEE Data Compression Conference, J. Storer and M.
Cohn, Eds. IEEE Computer Society Press, Los Alamitos, CA, 62–71.

HOWARD, P. G. AND VITTER, J. S. 1992. Analysis of arithmetic coding for data
compression. Inf. Process. Manage. 28, 6 (Nov.–Dec.), 749–763.

HOWARD, P. G. AND VITTER, J. S. 1994. Arithmetic coding for data compression. Proc. IEEE
82, 6, 857–865.

HUFFMAN, D. A. 1952. A method for the construction of minimum-redundancy codes. Proc.
Inst. Radio Eng. 40, 9 (Sept.), 1098–1101.

JIANG, J. 1995. Novel design of arithmetic coding for data compression. IEE Proc. Comput.
Dig. Tech. 142, 6 (Nov.), 419–424.

JONES, D. W. 1988. Application of splay trees to data compression. Commun. ACM 31, 8
(Aug.), 996–1007.

KNUTH, D. E. 1985. Dynamic Huffman coding. J. Alg. 6, 2 (June), 163–180.
KUHN, M. 1996. Implementation of JBIG (including a QM-coder). ftp://ftp.informatik.

uni-erlangen.de/pub/doc/ISO/JBIG/jbigkit-0.9.tar.gz
LANGDON, G. G. 1984. An introduction to arithmetic coding. IBM J. Res. Dev. 28, 2 (Mar.),

135–149.

Arithmetic Coding Revisited • 293

ACM Transactions on Information Systems, Vol. 16, No. 3, July 1998.

LANGDON, G. G. AND RISSANEN, J. 1981. Compresson of black-and-white images with
arithmetic coding. IEEE Trans. Commun. COM-29, 858–867.

MANSTETTEN, D. 1992. Tight upper bounds on the redundancy of Huffman codes. IEEE
Trans. Inf. Theor. 38, 1 (Jan.), 144–151.

MOFFAT, A. 1989. Word-based text compression. Softw. Pract. Exper. 19, 2 (Feb.), 185–198.
MOFFAT, A. 1990a. Implementing the PPM data compression scheme. IEEE Trans. Commun.

38, 11 (Nov.), 1917–1921.
MOFFAT, A. 1990b. Linear time adaptive arithmetic coding. IEEE Trans. Inf. Theor. 36, 2

(Mar.), 401–406.
MOFFAT, A. 1997. Critique of “Novel design of arithmetic coding for data compression”. IEE

Proc. Comput. Digit. Tech.
MOFFAT, A. AND TURPIN, A. 1997. On the implementaiton of minimum-redundancy prefix

codes. IEEE Trans. Commun. 45, 10 (Oct.), 1200–1207.
MOFFAT, A., SHARMAN, N., WITTEN, I. H., AND BELL, T. C. 1994. An empirical evaluation of

coding methods for multi-symbol alphabets. Inf. Process. Manage. 30, 6, 791–804.
PENNEBAKER, W. B., MITCHELL, J. L., LANGDON, G. G., AND ARPS, R. B. 1988. An overview of

the basic prinicples of the Q-coder adaptive binary arithmetic coder. IBM J. Res. Dev. 32, 6
(Nov.), 717–726.

RISSANEN, J. 1976. Generalised Kraft inequality and arithmetic coding. IBM J. Res. Dev. 20,
198–203.

RISSANEN, J. AND LANGDON, G. G. 1979. Arithmetic coding. IBM J. Res. Dev. 23, 2 (Mar.),
149–162.

RISSANEN, J. AND LANGDON, G. G. 1981. Universal modeling and coding. IEEE Trans. Inf.
Theor. IT-27, 1 (Jan.), 12–23.

RISSANEN, J. AND MOHIUDDIN, K. M. 1989. A multiplication-free multialphabet arithmetic
code. IEEE Trans. Comm. 37, 2 (Feb.), 93–98.

RUBIN, F. 1979. Arithmetic stream coding using fixed precision registers. IEEE Trans. Inf.
Theor. IT-25, 6 (Nov.), 672–675.

SCHINDLER, M. 1998. A fast renormalisation for arithmetic coding. In Proceedings of the 1998
IEEE Data Compression Conference (Snowbird, UT), J. A. Storer and M. Cohn, Eds. IEEE
Computer Society Press, Los Alamitos, CA, 572.

SHANNON, C. E. 1948. A mathematical theory of communication. Bell Syst. Tech. J. 27,
79–423.

VITTER, J. S. 1987. Design and analysis of dynamic Huffman codes. J. ACM 34, 4 (Oct.),
825–845.

WITTEN, I. H. AND BELL, T. C. 1991. The zero frequency problem: Estimating the probabilities
of novel events in adaptive text compression. IEEE Trans. Inf. Theor. 37, 4 (July),
1085–1094.

WITTEN, I. H., MOFFAT, A., AND BELL, T. C. 1994. Managing Gigabytes: Compressing and
Indexing Documents and Images. Van Nostrand Reinhold Co., New York, NY.

WITTEN, I. H., NEAL, R. M., AND CLEARY, J. G. 1987. Arithmetic coding for data
compression. Commun. ACM 30, 6 (June), 520–540.

WITTEN, I. H., NEAL, R. M., AND CLEARY, J. G. 1988. Authors’ response to “Compress and
Compact discussed further”. Commun. ACM 31, 9 (Sept.), 1140–1145.

ZIV, J. AND LEMPEL, A. 1977. A universal algorithm for sequential data compression. IEEE
Trans. Inf. Theor. IT-23, 3, 337–343.

Received: June 1996; revised: December 1996 and May 1997; accepted: August 1997

294 • A. Moffat et al.

ACM Transactions on Information Systems, Vol. 16, No. 3, July 1998.

