Advanced Intra Coding
Intra-Picture Prediction

Transform coding: Typical design
- 2D Discrete Cosine Transform of type II (or integer approximation)
- Scalar quantization: URQs with same quantization step size Δ
- Entropy coding (employing remaining statistical dependencies)

Can only utilize dependencies within transform blocks

Intra-picture prediction
- Can additionally utilize dependencies between transform blocks
- Very simple variant (JPEG and H.262 | MPEG-2 Video):
 Predict DC coefficient using DC coefficient of previous block
- More advanced approaches can significantly increase coding efficiency

Two approaches of intra-picture prediction
- Prediction in transform domain
- Prediction in spatial domain (before transform coding)
Prediction of DC Coefficient

Simplest Variant of Intra-Picture Prediction (JPEG & MPEG-2 Video)
- Predict DC level with DC level of previous block (left to current block)
- Transmit only difference to predictor

\[\Delta DC_k = DC_k - DC_{k-1} \]

- Reduces variance of pmf of transmitted DC level
- Improves coding efficiency

Example: Histogram with and without DC prediction (8×8 blocks)
Example: Effect of DC Prediction (8×8 Blocks)
Advanced Intra Prediction in Transform Domain

Advanced Intra Coding mode of H.263: Three coding modes

- **DC prediction** and zig-zag scan
- **Horizontal prediction** and alternate-vertical scan
 - Suitable for blocks with mainly horizontal structures
- **Vertical prediction** and alternate-horizontal scan
 - Suitable for blocks with mainly vertical structures
- Similar concept is also used in MPEG-4 Visual
How to Select Suitable Prediction Mode?

Mode Decision

- Syntax supports multiple intra prediction modes (mode is transmitted)
- Encoder has to select one of the supported modes
- Goal: Maximize coding efficiency

Lagrangian Mode Decision

- Evaluate all supported coding modes
 - Perform prediction, quantization, entropy coding, reconstruction
 - Calculate distortion $D = \sum_k (s'_k - s_k)^2$
 - Determine number of bits R for transmitting mode and transform coefficient levels
- Select mode that minimizes Lagrangian cost function

$$J = D + \lambda \cdot R$$
Intra-Picture Prediction / Spatial Intra Prediction

Intra Prediction: Transform Domain — Spatial Domain

Example: Vertical prediction

- Transform domain: Predict first row of transform coefficients
- Equivalent prediction in spatial domain

\[\hat{s}_{ver}[x, y] = \frac{1}{N} \sum_{k=0}^{N-1} s'[x, -1 - k] \]

- Simplified prediction in spatial domain

\[\hat{s}_{ver}[x, y] = s'[-1, y] \]
Spatial Intra Prediction

Spatial intra prediction

- Similar complexity than similar operation in transform domain
- Usage of directly adjacent samples \Rightarrow Improved coding efficiency
- Main advantages:
 - Can also be applied if neighboring blocks are coded in an inter mode
 - Straightforward extension to multiple prediction directions (can include interpolation of border samples)

Intra prediction in video coding standards

- H.262 | MPEG-2: Predict DC coefficient from previous block
- H.263 & MPEG-4: DC, horizontal, vertical (in transform domain)
- H.264 | AVC: 9 spatial intra prediction modes (for $4 \times 4/8 \times 8$ blocks)
- H.265 | HEVC: 35 spatial intra prediction modes (for all block sizes)

\Rightarrow Number of supported intra prediction modes is increased from one generation of video coding standards to the next
Spatial Intra Prediction in H.264 | MPEG-4 AVC

Intra-Picture Prediction / Spatial Intra Prediction
Spatial Intra Prediction in H.265 | MPEG-H HEVC

- **33 directional prediction modes** (linear interpolation / ref. sample smoothing)

 ![Directional prediction modes](image)

 - DC prediction mode (similar to H.264 | MPEG-4 AVC)
 - Planar prediction mode

 - In total: 35 spatial intra prediction modes
HEVC Planar Mode: General Idea

- Not all image blocks fit an edge model (well representable by directional image model)
- DC prediction only very coarse approximation (order-0 model)
- Alternative: Planar prediction mode

\[
\hat{s}[x, y] = \frac{N - 1 - x}{2N} \cdot s'[-1, y] + \frac{1 + x}{2N} \cdot \tilde{s}[N - 1, y] + \\
\frac{N - 1 - y}{2N} \cdot s'[x, -1] + \frac{1 + y}{2N} \cdot \tilde{s}[x, N - 1]
\]

\[
\tilde{s}[N - 1, y] = \frac{N - 1 - y}{N} \cdot s'[N - 1, -1] + \frac{1 + y}{2N} \cdot \tilde{s}[N - 1, N - 1]
\]

\[
\tilde{s}[x, N - 1] = \frac{N - 1 - x}{N} \cdot s'[-1, N - 1] + \frac{1 + x}{2N} \cdot \tilde{s}[N - 1, N - 1]
\]

\[
\tilde{s}[N - 1, N - 1] = \frac{1}{2} \cdot s'[N - 1, -1] + \frac{1}{2} \cdot s'[-1, N - 1]
\]
HEVC Planar Mode: Actual Implementation

\[
\hat{s}_H[x, y] = (N - 1 - x) \cdot s'[1, y] + (1 + x) \cdot s'[N - 1, -1]
\]

\[
\hat{s}_V[x, y] = (N - 1 - y) \cdot s'[x, -1] + (1 + y) \cdot s'[-1, N - 1]
\]

\[
\hat{s}[x, y] = \frac{1}{2N} \left(\hat{s}_H[x, y] + \hat{s}_V[x, y] \right)
\]
Spatial Intra Prediction — Coding Efficiency

Experimental investigation with H.265 | MPEG-H HEVC
- Restricted to 8×8 blocks (effect of block size is discussed later)
- Limited number of used prediction modes (reference: DC prediction only)

Coding efficiency increases with number of supported intra prediction modes
Variable Block Sizes for Prediction and Transform Coding

Block Sizes for Prediction and Transform Coding

Impact of block size selection for transform coding
- Coding efficiency of transform coding typically increases with block size
- Coding efficiency improvement becomes small beyond a certain block size
- Complexity increases with block size

Impact of block size selection for spatial prediction
- Correlation decreases with increasing sample distances
- Intra prediction is more effective for smaller block sizes
- Side information rate (for intra modes) increases with decreasing block size

Combination of intra prediction and transform coding
- Optimal block size depends on actual signal properties
- Natural images: Highly non-stationary statistical properties
 - No single optimal block size
 - Adaptive block size selection can improve coding efficiency
Block Sizes in Video Coding Standards

H.262 | MPEG-2 Video, H.263, MPEG-4 Visual
- Fixed block sizes for prediction and transform coding
- 16×16 macroblocks (for signaling intra prediction mode)
- 8×8 transform blocks

H.264 | MPEG-4 AVC (High profile)
- 16×16 macroblocks
- 3 intra coding modes: Intra4x4, Intra8x8, Intra16x16
- Block sizes for prediction and transform coding: 4×4, 8×8, 16×16
- Intra prediction mode selected on basis of transform blocks
- Intra16x16: Only 4 prediction modes & low-complexity 16×16 transform
Picture partitioning into **coding tree blocks**

- Coding tree blocks (CTBs): Fixed size of 16×16, 32×32 or 64×64 luma samples
- Size of CTBs chosen by encoder
- Luma and chroma CTBs together with syntax are called **coding tree unit** (CTU)

Partitioning of coding tree blocks

- Quad-tree partitioning into **coding blocks** (CBs)
- Luma and chroma CBs together with syntax are called **coding unit** (CU)
- Minimum CU size: Selected by encoder, but equal to or larger than 8×8 luma samples
- Coding mode (intra or inter) is chosen for CU
- Coding order: Z-scan
Example: Picture Partitioning into Coding Units

Example for picture partitioning into coding units

- Picture with 2560×1600 luma samples of HEVC test sequence “Traffic”
- Quadtree-based partitioning into coding unit represents a simple scheme for locally adapting the block sizes to the image structure
Partitioning of a CB into transform blocks (TBs)

- Nested quad-tree partitioning
- TB corresponds to a single block transform
- Supported sizes: 4×4, 8×8, 16×16, 32×32
- Luma and chroma TBs together with syntax form a transform unit (TU)

Intra prediction and mode signaling

- One or four luma intra prediction modes per coding unit
- One chroma prediction mode per CU
- Actual intra prediction is performed transform block by transform block
- Improved prediction accuracy
Block Sizes for Intra-Picture Coding — Coding Efficiency

First coding experiment with H.265 | MPEG-H HEVC

- Reduce impact of intra prediction: Only DC prediction is enabled
- Check different fixed block sizes & variable block sizes
 - Fixed block sizes: Coding efficiency increases with block size
 - Variable block sizes provide coding gains
Variable Block Sizes for Prediction and Transform Coding

Block Sizes for Intra-Picture Coding — Coding Efficiency

Second coding experiment with H.265 | MPEG-H HEVC

- All intra prediction modes are enabled
- Prediction increases effectiveness of smaller block sizes
- Fixed block sizes: Medium block sizes provide best coding efficiency
- Variable block sizes provide coding gains
Block Sizes for Intra-Picture Coding — Coding Efficiency

Third coding experiment with H.265 | MPEG-H HEVC

- All intra prediction modes are enabled
- Start with 8×8 blocks and successively enable additional block sizes
 ➔ Additional block sizes provide coding efficiency improvements
 ➔ Beside intra-picture prediction, the support of additional block sizes is a main factor for the improvement in intra-picture coding
Transform coding of sample blocks

- Separable orthogonal transform: DCT or integer approximation
- Scalar quantization: URQs with same quantization step size Δ
- Entropy coding: Utilize remaining dependencies between quantization indexes

Intra-picture prediction

- Utilize dependencies between transform blocks
- Two methods: Prediction in transform domain or spatial domain
- Spatial prediction: Straightforward realization of multiple prediction modes
- Coding efficiency typically increases with number of supported intra modes

Block sizes for intra prediction and transform coding

- Determine efficiency of prediction and transform coding
- Non-stationary character of natural images \Rightarrow Variable block sizes
- Simple and flexible partitioning: Quadtree-based approaches
- Variable block sizes significantly increase coding efficiency