Exercises: Implementing a Codec with Prediction

The following tasks can be implemented in MATLAB.

1. Implement a codec.

 (a) Download the sample picture from the homepage http://r0k.us/graphics/kodak/kodim08.html.

 Read the image with entries denoted here by
 \[f(i, j) \] with \(i = 1, 2, \ldots, \text{dim1} \), \(j = 1, 2, \ldots, \text{dim2} \),

 where \text{dim1} \ and \ \text{dim2} \ are the image dimensions.

 (b) Convert the image into the YCbCr color space. Use only the Luma component. In MATLAB use: rgb2ycbcr.

 (c) Partition the image into blocks of size \(8 \times 8 \):

 i. On each block, perform a 2D Discrete Cosine Transform. In MATLAB use: dct2.

 ii. Quantize the result \(F \) for a uniform quantization parameter \(QP \in \{10, 15, 22, 32\} \):

 \[
 \text{level}(i, j) = \text{round} \left(\frac{F(i, j)}{QP} \right)
 \]

 iii. Scale the level back

 \[
 F(i, j) = \text{level}(i, j) \cdot QP
 \]

 and transform it back to spatial domain.

 (d) Put the image back together and display.

2. Implement a codec with predictive coding. Repeat steps [1a] and [1b]. Partition the image into blocks of size \(8 \times 8 \):

 - For each block, construct the DC prediction \(P \) at the encoder side which is given by an \(8 \times 8 \) matrix

 \[
 P_{ij} = m \quad \forall \ i, j = 1, \ldots, 8,
 \]

 where \(m \) is the average value of the boundary values on the left \(L \) and above \(T \) of the current block consisting of reconstructed samples:

 \[
 m = \frac{1}{16} \left(\sum_{i=1}^{8} T(i) + \sum_{j=1}^{8} L(j) \right).
 \]

 In case the block is located at the border of the image, set \(m = 128 \).
• Compute the residual Res by subtracting prediction P from the original block samples.

• Repeat steps [1(c)i] to [1(c)iii], replacing F with Res.

• Add the result to the prediction P to obtain the reconstructed sample block.

• Repeat step [1d]

3. Create a Rate Distortion Plot for 1 and 2

(a) For each $QP \in \{10, 15, 22, 32\}$ approximate the rate R by calculating the number of samples times the entropy H

$$H = - \sum_{i=1}^{\text{dim}_{1}} \sum_{j=1}^{\text{dim}_{2}} p(i,j) \cdot \log_2(p(i,j)),$$

where $p(i,j)$ is the probability corresponding to $\text{level}(i,j)$. To approximate the probability p of each level, count how often the value $\text{level}(i,j)$ occurs in the image and denote this by $\#\text{level}(i,j)$. Then it holds

$$p(i,j) = \frac{\#\text{level}(i,j)}{\text{dim}_{1} \cdot \text{dim}_{2}}$$

Hint: In MATLAB you can use

```matlab
hist(level,[min(level):1:max(level)]).
```

Here, make sure to take the zeros out before you calculate the entropy.

(b) For each QP calculate the distortion D using the mean squared error (MSE).

(c) Plot the pairs (R, D) for each QP.

4. Questions:

(a) Compare the different Rate Distortion Curves. Which implementation is more efficient in terms of the Rate Distortion?

(b) Why did we not use the original image samples in 2 to compute the prediction?