Exercises: Implementing a Codec

The following tasks can be implemented in MATLAB.

1. Implement a codec.

 (a) Download the sample picture from the homepage

 \url{http://r0k.us/graphics/kodak/kodim08.html}

 Read the image with entries denoted here by

 \[f(i, j) \quad \text{with } i = 1, 2, \ldots, \text{dim1}, \quad j = 1, 2, \ldots, \text{dim2}, \]

 where \text{dim1} and \text{dim2} are the image dimensions.

 (b) Convert the image into the YCbCr color space. Use only the Luma component. In MATLAB use: \texttt{rgb2ycbcr}.

 (c) Partition the image into blocks of size 8 × 8:

 • On each block, perform a 2D Discrete Cosine Transform. In MATLAB use: \texttt{dct2}.

 • Quantize the result for a uniform quantization parameter \(QP \in \{10, 15, 22, 32\} \):

 \[\text{level}(i, j) = \text{round} \left(\frac{f(i, j)}{QP} \right) \]

 • Scale the level back

 \[\tilde{f}(i, j) = \text{level}(i, j) \cdot QP \]

 and transform it back to spatial domain.

 (d) Put the image back together and display.

2. Create a Rate Distortion Plot.

 (a) For each \(QP \in \{10, 15, 22, 32\} \) approximate the rate \(R \) by calculating the number of samples times the entropy \(H \)

 \[H = - \sum_{i=1}^{\text{dim1}} \sum_{j=1}^{\text{dim2}} p(i, j) \cdot \log_2(p(i, j)), \]

 where \(p(i, j) \) is the probability corresponding to \(\text{level}(i, j) \). To approximate the probability \(p \) of each level, count how often the value \(\text{level}(i, j) \) occurs in the image and denote this by \#\(\text{level}(i, j) \). Then it holds

 \[p(i, j) = \frac{\#\text{level}(i, j)}{\text{dim1} \cdot \text{dim2}} \]

 Hint: In MATLAB you can use

 \texttt{hist(level,[min(level):1:max(level)])}.

 Here, make sure to take the zeros out before you calculate the entropy.
(b) For each QP calculate the distortion D using the mean squared error (MSE).

(c) Plot the pairs (R, D) for each QP.

Hint: The Rate-Distortion Curve looks something like this:

![Rate-Distortion Curve](image)

Food for Thought:

- At which point of the algorithm do we lose information? How can we increase the compression rate?

- What is the structure of the transform coefficient matrix in step (1c) before we transform it back to spatial domain?